Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_matan.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.03 Mб
Скачать
  1. 1Матрицы.Действия с матрицами

Матрицей называется прямоугольная таблица чисел, состоящая из mодинаковой длины строк или n одинаковой длины стробцов.

aij- элемент матрицы, который находится в i-ой строке и j-м столбце.

Вид матрицы

квадратная

Квадратная матрица - это матрица с равным числом столбцов и строк.

Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n:

расположенных в m строках и n столбцах. Матрица называется квадратной, еслиm=n (n - порядок матрицы).

Линейные матричные операции По определению, чтобы умножить матрицу на число, нужно умножить на это число все элементы матрицы.  Суммой двух матриц одинаковой размерности, называется матрица той же размерности, каждый элемент которой равен сумме соответствующих элементов слагаемых.

Произведение матриц определяется следующим образом. Пусть заданы две матрицыA и B, причем число столбцов первой из них равно числу строк второй. Если

,

то произведением матриц A и B, называется матрица

,

элементы которой вычисляются по формуле

c ij =a i1 b 1j + a i2 b 2j + ... +a in b nj , i=1, ..., m, j=1, ..., k.

Произведение матриц A и B обозначается AB, т.е. C=AB.

 

ПРИМЕР 1. Действия с матрицами.

 

Произведение матриц, вообще говоря, зависит от порядка сомножителей. ЕслиAB=BA, то матрицы A и B называются перестановочными.

 

ПРИМЕР 2. Проверка перестановочности матриц.

 

Для квадратных матриц определена единичная матрица - квадратная матрица, все диагональные элементы которой единицы, а остальные - нули:

Единичная матрица чаще всего обозначается буквой E или E n, где n - порядок матрицы. Непосредственным вычислением легко проверить основное свойствоединичной матрицы:

AE=EA=A.

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.

ПРИМЕР 3. Умножение матрицы на матрицы специального вида

Для квадратных матриц определена операция возведения в целую неотрицательную степень:

A 0 =E, A 1 =A, A 2 =AA, ..., A n =A n-1 A, ....

 

ПРИМЕР 4. Возведение матрицы в степень.

 

Для прямоугольных матриц определена операция транспонирования. Рассмотрим произвольную прямоугольную матрицу A. Матрица, получающаяся из матрицы Aзаменой строк столбцами, называется транспонированной по отношению к матрице и обозначается A T:

.

Вернысоотношения: (AT )T =A; (A+B)T=AT +BT ; (AB)T =BT AT.

Квадратная матрица A, для которой A T =A, называется симметричной. Элементы такой матрицы, расположенные симметрично относительно главной диагонали, равны.

Квадратная матрица A называется обратимой, если существует такая матрица X, что AX=XA=E.  Матрица X называется обратной к матрице A и обозначается A -1, т.е.  A A -1 =A -1A=E.

Известно, что если матрица A невырождена (т.е ее определитель отличен от нуля), то у нее существует обратная матрица A -1.

Верно соотношение: (A-1)T =(AT ) -1.

 

ПРИМЕР 5. Обращение матрицы.

 

Квадратная матрица U, для которой U -1 =U T, называется ортогональной матрицей.

Свойства ортогональной матрицы:

  • Модуль определителя ортогональной матрицы равен единице.

  • Сумма квадратов элементов любого столбца ортогональной матрицы равна единице.

  • Сумма произведений элементов любого столбца ортогональной матрицы на соответствующие элементы другого столбца равна нулю. Такими же свойствами обладают строки ортогональной матрицы.

 

2.ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ, ИХ ОСНОВНЫЕ СВОЙСТВА.

 

Определение 1.1Матрицей называется прямоугольная таблица чисел.

                           

Обозначения:  А – матрица,   - элемент матрицы,   номер строки, в которой стоит данный элемент,   номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.

 

Определение 1.2. Числа m и n называются размерностями матрицы.

 

Определение 1.3. Матрица называется квадратной, если m = n. Число n в этом случае называют порядком квадратной матрицы.

 

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

                                

 

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

                      .

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего вправый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

 

Примеры.

 

1.            2. 

 

Определение 1.5Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

 

Замечание. Для того, чтобы легче запомнить эту формулу, можно использовать так называемое правило треугольников. Оно заключается в следующем: элементы, произведения которых входят в определитель со знаком «+», располагаются так:

 

 образуя два треугольника, симметричных относительно главной диагонали. Элементы, произведения которых входят в определитель со знаком «-», располагаются аналогичным образом относительно побочной диагонали: 

 

 

Примеры.

1. 

2. 

 

Определение1. 6Транспонированием матрицы называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования. В результате получается матрица А`, называемая транспонированной по отношению к матрице А, элементы которой связаны с элементами А соотношением   a`ij = aji .

 

 

                            Основные свойства определителей.

 

Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).

 

Свойство 1. Определитель не изменяется при транспонировании, т.е.

                   

 

Доказательство.

 

 

=    

Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.

 

Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.

                             .

 

Доказательство.

 

         

Свойство 3. Определитель, имеющий нулевую строку, равен 0.   

                               

Доказательство этого свойства следует из свойства 2 при k = 0.

 

Свойство 4. Определитель, имеющий две равные строки, равен 0.

                             

                            

Доказательство.

Свойство 5. Определитель, две строки которого пропорциональны, равен 0.

                           

Доказательство следует из свойств 2 и 4.

 

Свойство 6. При перестановке двух строк определителя он умножается на –1.

                   

 

Доказательство.

 

 

Свойство 7.

 

Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.

 

Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

               

Доказательство следует из свойств 7 и 5.

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]