
- •Законы Ньютона. 1-ый закон. Инерция. Инерциальные и неинерциальные со. Импульс тела. 2-ой закон. 3-й закон. Пределы применимости законов Ньютона.
- •Механическая система. Замкнутая система. Вывод закона сохранения импульса замкнутой системы тел.
- •Потенциальная энергия, напряженность поля тяготения. Зависимость напряженности поля тяготения от высоты. Потенциальная энергия упруго сжатой пружины.
- •Вывод закона сохранения механической энергии и теоремы об изменении полной механической энергии системы. Абсолютно упругий и неупругий удар.
- •Теорема Штейнера. Кинетическая энергия тела, вращающегося вокруг неподвижной оси. Кинетическая энергия плоского движения.
- •Момент силы относительно полюса, оси. Работа при вращательном движении. Вывод основное уравнение динамики вращательного движения атт.
- •Вязкость. Ламинарный и турбулентный режимы течения жидкости. Число Рейнольдса. Методы определения вязкости (метод Стока и Пуазейля).
- •Метод Стокса (вывод).
- •Явление переноса
- •Теплопроводность
- •Диффузия.
- •Среднее число столкновений и средняя длина свободного пробега молекул
- •Уравнение Фурье
- •Молекулярно-кинетическая теория идеальных газов. Понятие идеального газа.Законы Бойля-Мариотта, Гей-люссака, Авогадро и Дальтона. Молекулярно-кинетическая теория идеальных газов
- •Идеальный газ.
- •Закон Бойля-Мариотта.
- •Закон Дальтона.
- •Закон Гей-Люссака.
- •Закон Авогадро.
- •Барометрическая формула. Распределение Больцмана. Распределение Больцмана
- •Термодинамические параметры
- •Термодинамические процессы
- •Первое начало термодинамики
- •Степени свободы в статистической физике и термодинамике
- •Закон Больцмана о равномерном распределении энергии по степеням свободы молекул:
- •Теплоемкость удельная и молярная. Вывод уравнения Майера. Коэффициент Пуассона. Экспериментальная зависимость теплоемкости газа от температуры.
- •Молярная теплоёмкость
- •Уравнение Майера
- •Коэффициент Пуассона
- •Применение первого начала термодинамики к расчету изопроцессов. Изохорный, изобарный, изотермический и адиабатический процессы.
- •Адиабатный процесс. Вывод уравнения Пуассона для адиабатного процесса.
- •Круговые процессы. Прямой и обратный цикл. Тепловой двигатель и холодильная машина. Термический коэффициент полезного действия. Обратимые и необратимые процессы.
- •Цикл Карно. Диаграмма. Вывод к.П.Д. Цикла Карно.
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнения Ван-дер-Ваальса. Анализ изотерм Ван-дер-Ваальса. Сжижение газов.
- •Фазовые переходы. Фазовые переходы 1 и 2-го рода. Уравнение Клапейрона-Клаузиуса. Диаграмма состояний. Тройная точка.
- •Статистическое толкование энтропии. Микро- и макросостояние системы. Термодинамическая вероятность. Формула Больцмана.
Явление переноса
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии),диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.
Теплопроводность
Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.
Перенос энергии в форме теплоты подчиняется закону Фурье:
Теплопроводность численно равна плотности теплового потока при градиенте температуры, равном единице.
Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной 1 м, площадью 1 м2, за единицу времени (секунду) при единичном температурном градиенте.
Диффузия.
Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро.
Явление диффузии для химически однородного газа подчиняется закону Фука:
где jm — плотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку,перпендикулярную оси х, D — диффузия (коэффициент диффузии), d/dx — градиент плотности, равный скорости изменения плотности на единицу длины хв направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и d/dxпротивоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице
Коэффицие́нт диффу́зии — количественная характеристика скорости диффузии, равная количеству вещества (в массовых единицах), проходящего в единицу времени через участок единичнойплощади (например, 1 м²) при градиенте концентрации, равном единице (соответствующем изменению 1 моль/л → 0 моль/л на единицу длины). Коэффициент диффузии определяется свойствами среды и типом диффундирующих частиц.
Зависимость коэффициента диффузии от температуры в простейшем случае выражается законом Аррениуса:
,
где
—
коэффициент диффузии [м²/с];
— энергия
активации [Дж];
— универсальная
газовая постоянная [Дж/К];
—
температура [K].
Внутреннее трение (вязкость).
Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:
где — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S — площадь, на которую действует сила F.