- •Вопросы по курсу математическая логика и теория алгоритмов
- •Понятие высказывания.
- •Логические операции над высказываниями.
- •Формулы алгебры логики.
- •Равносильности.
- •1. Основные равносильности.
- •2. Равносильности, выражающие одни логические операции через другие.
- •3. Равносильности, выражающие основные законы алгебры логики.
- •Понятия тождественной истинности и ложности.
- •Функции алгебры логики. Свойства совершенства. Закон двойственности. Функции алгебры логики
- •Закон двойственности Закон двойственности
- •Дизъюнктивная нормальная форма (днф и сднф).
- •[Править]сднф
- •Конъюнктивная нормальная форма (кнф и скнф).
- •[Править]скнф
- •Проблема разрешимости.
- •Релейно-контактные схемы.
- •7.1 Релейно-контактные схемы
- •Элементы и множества. Задание множеств.
- •Операции над множествами.
- •Диаграммы Эйлера-Венна.
- •Разбиения и покрытия множеств.
- •Свойства операций над множествами. Свойства операций над множествами
- •Упорядоченные пары. Декартово произведение множеств.
- •Отношения. Композиция, степень и ядро отношения.
- •[Править]Степень отношений
- •Функции. Инъективные, сюръективные и биективные функции.
- •Формулы исчисления высказываний.
- •Доказуемые формулы.
- •Аксиомы исчисления высказываний.
- •Правила вывода в исчислении высказываний.
- •Понятие выводимости формулы.
- •Правила выводимости.
- •Доказательство законов логики.
- •Связь между алгеброй высказываний и исчислением высказываний.
- •Основные понятия логики предикатов.
- •Исчисление предикатов. Основные понятия.
- •Логические операции над предикатами.
- •Кванторные операции.
- •Квантор всеобщности.
- •Квантор существования.
- •Отрицание предложений с кванторами.
- •Формулы логики предикатов.
- •Равносильные формулы логики предикатов.
- •Предваренная нормальная форма.
- •Общезначимость и выполнимость формул логики предикатов.
- •Применение логики предикатов для записи математических высказываний.
- •§9. Применение языка логики предикатов для записи математических предложений, определений, построения отрицания предложений.
- •9.1 Запись математических предложений и определений в виде формул логики предикатов.
- •9.2. Построение противоположный утверждений.
- •9.3 Прямая, обратная и противоположная теоремы.
- •9.4 Необходимые и достаточные условия.
- •9.5. Доказательство теорем методом от противного.
- •Алгоритмы. Основные свойства алгоритмов.
- •Частично рекурсивные и общерекурсивные функции. Тезис Черча.
- •Машина Тьюринга. Тезис Тьюринга.
Равносильные формулы логики предикатов.
Равносильные формулы логики предикатов.
Определение 1.
Две формулы логики предикатов А и В называются равносильными на области М, если они принимают одинаковые логические значения при всех значениях входящих в них переменных, отнесенных к области М.
Определение 2.
Две формулы логики предикатов А и В называются равносильными, если они равносильны на всякой области.
Ясно, что все равносильности алгебры высказываний будут верны, если в них вместо переменных высказываний подставить формулы логики предикатов. Но, кроме того, имеют место равносильности самой логики предикатов. Рассмотрим основные из этих равносильностей.
Пусть А(х) и В(х) – переменные предикаты, а С – переменное высказывание (или формула, не содержащая х). Тогда имеют место равносильности:
1.
2.
3.
4.
5.
.
Равносильность
1 означает тот простой факт, что, если
не для всех х истинно А(х), то существует
х, при котором будет истиной
.
Равносильность 2 означает тот простой факт, что, если не существует х, при котором истинно А(х), то для всех х будет истиной .
Равносильности 3 и 4 получаются из равносильностей 1 и 2, соответственно, если от обеих их частей взять отрицания и воспользоваться законом двойного отрицания.
ЗАКОНЫ ЛОГИЧЕСКИХ ОПЕРАЦИЙ.
(общезначимые формулы логики предикатов)
|
|
Предваренная нормальная форма.
В логике предикатов, как и в логике высказываний, формулы могут иметь нормальную форму, т.е. существуют эквивалентные нормальные формы представления любых предикатных формул. При этом, используя равносильности алгебры высказываний и логики предикатов, каждую формулу логики предикатов можно привести к нормальной форме. В логике предикатов различают два вида нормальных форм: приведенную и предваренную.
Определение.
Говорят, что формула логики предикатов имеет приведенную нормальную форму, если она содержит только операции конъюнкции, дизъюнкции и кванторные операции, а операция отрицания отнесена к элементарным формулам.
Пример 1.
.
Получили приведенную нормальную форму исходной формулы.
Среди нормальных форм формул логики предикатов выделяют так называемую предваренную (префиксную, пренексную) нормальную форму (ПНФ). В ней кванторные операции либо полностью отсутствуют, либо они используются после всех операций алгебры логики, т.е. ПНФ формулы логике предикатов имеет вид
,
где под символом
понимается один из кванторов
или
,
а формула А кванторов не содержит.
Процедура получения (приведения) ПНФ. Состоит в следующем:
Используя формулы 18, 19 (отнесенные к предикатам), заменить операции и ~ на
.Используя формулы логики предикатов 31, 32, а также формулы логики высказываний 1, 16, 17, представить предикатную формулу таким образом, чтобы символы отрицания относились непосредственно к символам предикатов (и, таким образом, мы приводим исходную формулу к приведенной форме).
Для формул, содержащих подформулы вида
,
вести новые переменные, позволяющие
использовать соотношения 46, 47, 49, 50 или
53, 54.С помощью формул 35 – 38, 46, 47, 49, 50, 53, 54 получить формулу в виде ПНФ.
Пример 2.
обозначим в предикате Q переменную y
через z
Пример 3.
обозначим в предикате Q переменную x
через z
–
ПНФ.
Пример 4.
последний
предикат не зависит от переменной z
два первых предиката не зависят от
переменной u
- ПНФ.
Пример 5.
