- •Вопросы по курсу математическая логика и теория алгоритмов
- •Понятие высказывания.
- •Логические операции над высказываниями.
- •Формулы алгебры логики.
- •Равносильности.
- •1. Основные равносильности.
- •2. Равносильности, выражающие одни логические операции через другие.
- •3. Равносильности, выражающие основные законы алгебры логики.
- •Понятия тождественной истинности и ложности.
- •Функции алгебры логики. Свойства совершенства. Закон двойственности. Функции алгебры логики
- •Закон двойственности Закон двойственности
- •Дизъюнктивная нормальная форма (днф и сднф).
- •[Править]сднф
- •Конъюнктивная нормальная форма (кнф и скнф).
- •[Править]скнф
- •Проблема разрешимости.
- •Релейно-контактные схемы.
- •7.1 Релейно-контактные схемы
- •Элементы и множества. Задание множеств.
- •Операции над множествами.
- •Диаграммы Эйлера-Венна.
- •Разбиения и покрытия множеств.
- •Свойства операций над множествами. Свойства операций над множествами
- •Упорядоченные пары. Декартово произведение множеств.
- •Отношения. Композиция, степень и ядро отношения.
- •[Править]Степень отношений
- •Функции. Инъективные, сюръективные и биективные функции.
- •Формулы исчисления высказываний.
- •Доказуемые формулы.
- •Аксиомы исчисления высказываний.
- •Правила вывода в исчислении высказываний.
- •Понятие выводимости формулы.
- •Правила выводимости.
- •Доказательство законов логики.
- •Связь между алгеброй высказываний и исчислением высказываний.
- •Основные понятия логики предикатов.
- •Исчисление предикатов. Основные понятия.
- •Логические операции над предикатами.
- •Кванторные операции.
- •Квантор всеобщности.
- •Квантор существования.
- •Отрицание предложений с кванторами.
- •Формулы логики предикатов.
- •Равносильные формулы логики предикатов.
- •Предваренная нормальная форма.
- •Общезначимость и выполнимость формул логики предикатов.
- •Применение логики предикатов для записи математических высказываний.
- •§9. Применение языка логики предикатов для записи математических предложений, определений, построения отрицания предложений.
- •9.1 Запись математических предложений и определений в виде формул логики предикатов.
- •9.2. Построение противоположный утверждений.
- •9.3 Прямая, обратная и противоположная теоремы.
- •9.4 Необходимые и достаточные условия.
- •9.5. Доказательство теорем методом от противного.
- •Алгоритмы. Основные свойства алгоритмов.
- •Частично рекурсивные и общерекурсивные функции. Тезис Черча.
- •Машина Тьюринга. Тезис Тьюринга.
Отрицание предложений с кванторами.
Известно, что часто для отрицания некоторого предложения достаточно предпослать сказуемому этого предложения отрицательную частицу “не”. Например, отрицанием предложения “Река х впадает в Черное море.” является предложение “ Река х не впадает в Черное море ”. Годится ли этот прием для построения отрицаний предложений с кванторами? Рассмотрим пример.
Предложения “Все птицы летают ” и “Все птицы не летают ” не являются отрицаниями друг друга, т. к. они оба ложны. Предложения “ Некоторые птицы летают ” и “ Некоторые птицы не летают ” не являются отрицанием друг друга, т. к. они оба истинны.Таким образом , предложения , полученные добавлением частицы “не” к сказуемому предложений “Все х суть Р” и “Некоторые х суть Р” не являются отрицаниями этих предложений.Универсальным способом построения отрицания данного предложения является добавление словосочетания “наверно, что” в начале предложения. Таким образом, отрицанием предложения “Все птицы летают” является предложение “Неверно, что все птицы летают”; но это предложение имеет тот же смысл, что и предложение “Некоторые птицы не летают”. Отрицанием предложения “Некоторые птицы летают” является предложение “Неверно, что некоторые птицы летают”, которое имеет тот же смысл, что и предложение “Все птицы не летают”.
Условимся отрицание предложения
записывать как
,
а отрицание предложения
– как
.
Очевидно, что предложение
имеет тот же смысл, а следовательно, то
же значение истинности, что и предложение
,
а предложение
–
тот же смысл, что
.
Иначе говоря,
равносильно
;
равносильно
.
Кванторы общности и существования
называют двойственными относительно
друг друга. Выясним теперь, как строить
отрицание предложения, начинающегося
с нескольких кванторов, например, такого:
.
Последовательно применяя сформулированное
выше правило, получим:
равносильно
,
что равносильно
,
что равносильно
.
Формулы логики предикатов.
Понятие формулы логики предикатов.
В логике предикатов будем пользоваться следующей символикой :
Символы p, q, r, …- переменные высказывания, принимающие два значения: 1- истина , 0 – ложь.
Предметные переменные – x, y, z, … , которые пробегают значения из некоторого множества М;
x0, y0, z0 – предметные константы, т. е. значения предметных переменных.
P(·), Q(·), F(·), … - одноместные предикатные переменные;
Q(·,·,…,·), R(·,·, …,·) – n-местные предикатные переменные.
P0(·), Q0(·,·, …,·) – символы постоянных предикатов.
Символы логических операций:
Символы кванторных операций:
Вспомогательные символы: скобки, запятые.
Определение формулы логики предикатов.
Каждое высказывание как переменное, так и постоянное, является формулой (элементарной).
Если F(·,·, …,·) – n-местная предикатная переменная или постоянный предикат, а x1, x2,…, xn– предметные переменные или предметные постоянные (не обязательно все различные), то F(x1, x2,…, xn) есть формула. Такая формула называется элементарной, в ней предметные переменные являются свободными, не связанными кванторами.
Если А и В – формулы, причем, такие, что одна и та же предметная переменная не является в одной из них связанной, а в другой – свободной, то слова
есть формулы. В этих формулах те
переменные, которые в исходных формулах
были свободны, являются свободными, а
те, которые были связанными, являются
связанными.Если А – формула, то – формула, и характер предметных переменных при переходе от формулы А к формуле не меняется.
Если А(х) – формула, в которую предметная переменная х входит свободно, то слова
и
являются формулами, причем, предметная
переменная входит в них связанно.Всякое слово, отличное от тех, которые названы формулами в пунктах 1 – 5, не является формулой.
Например, если Р(х) и Q(x,y) – одноместный и двухместный предикаты, а q, r – переменные высказывания, то формулами будут, например, слова (выражения):
.
Не является
формулой, например, слово:
.
Здесь нарушено условие п.3, так как
формулу
переменная х входит связанно, а в формулу
Р(х) переменная х входит свободно.
Из определения формулы логики предикатов ясно, что всякая формула алгебры высказываний является формулой логики предикатов.
