Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы по матлогике.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.27 Mб
Скачать
    1. Отрицание предложений с кванторами.

Известно, что часто для отрицания некоторого предложения достаточно предпослать сказуемому этого предложения отрицательную частицу “не”. Например, отрицанием предложения “Река х впадает в Черное море.” является предложение “ Река х не впадает в Черное море ”. Годится ли этот прием для построения отрицаний предложений с кванторами? Рассмотрим пример.

Предложения “Все птицы летают ” и “Все птицы не летают ” не являются отрицаниями друг друга, т. к. они оба ложны. Предложения “ Некоторые птицы летают ” и “ Некоторые птицы не летают ” не являются отрицанием друг друга, т. к. они оба истинны.Таким образом , предложения , полученные добавлением частицы “не” к сказуемому предложений “Все х суть Р” и “Некоторые х суть Р” не являются отрицаниями этих предложений.Универсальным способом построения отрицания данного предложения является добавление словосочетания “наверно, что” в начале предложения. Таким образом, отрицанием предложения “Все птицы летают” является предложение “Неверно, что все птицы летают”; но это предложение имеет тот же смысл, что и предложение “Некоторые птицы не летают”. Отрицанием предложения “Некоторые птицы летают” является предложение “Неверно, что некоторые птицы летают”, которое имеет тот же смысл, что и предложение “Все птицы не летают”.

Условимся отрицание предложения записывать как , а отрицание предложения – как . Очевидно, что предложение имеет тот же смысл, а следовательно, то же значение истинности, что и предложение , а предложение – тот же смысл, что . Иначе говоря, равносильно ; равносильно .

Кванторы общности и существования называют двойственными относительно друг друга. Выясним теперь, как строить отрицание предложения, начинающегося с нескольких кванторов, например, такого: .

Последовательно применяя сформулированное выше правило, получим: равносильно , что равносильно , что равносильно .

  1. Формулы логики предикатов.

Понятие формулы логики предикатов.

В логике предикатов будем пользоваться следующей символикой :

  1. Символы p, q, r, …- переменные высказывания, принимающие два значения: 1- истина , 0 – ложь.

  2. Предметные переменные – x, y, z, … , которые пробегают значения из некоторого множества М;

x0, y0, z0 предметные константы, т. е. значения предметных переменных.

  1. P(·), Q(·), F(·), … - одноместные предикатные переменные;

Q(·,·,…,·), R(·,·, …,·) – n-местные предикатные переменные.

P0(·), Q0(·,·, …,·) – символы постоянных предикатов.

  1. Символы логических операций:

  2. Символы кванторных операций:

  3. Вспомогательные символы: скобки, запятые.

Определение формулы логики предикатов.

  1. Каждое высказывание как переменное, так и постоянное, является формулой (элементарной).

  2. Если F(·,·, …,·) – n-местная предикатная переменная или постоянный предикат, а x1, x2,…, xn– предметные переменные или предметные постоянные (не обязательно все различные), то F(x1, x2,…, xn) есть формула. Такая формула называется элементарной, в ней предметные переменные являются свободными, не связанными кванторами.

  3. Если А и В – формулы, причем, такие, что одна и та же предметная переменная не является в одной из них связанной, а в другой – свободной, то слова есть формулы. В этих формулах те переменные, которые в исходных формулах были свободны, являются свободными, а те, которые были связанными, являются связанными.

  4. Если А – формула, то – формула, и характер предметных переменных при переходе от формулы А к формуле не меняется.

  5. Если А(х) – формула, в которую предметная переменная х входит свободно, то слова и являются формулами, причем, предметная переменная входит в них связанно.

  6. Всякое слово, отличное от тех, которые названы формулами в пунктах 1 – 5, не является формулой.

Например, если Р(х) и Q(x,y) – одноместный и двухместный предикаты, а q, r – переменные высказывания, то формулами будут, например, слова (выражения):

.

Не является формулой, например, слово: . Здесь нарушено условие п.3, так как формулу переменная х входит связанно, а в формулу Р(х) переменная х входит свободно.

Из определения формулы логики предикатов ясно, что всякая формула алгебры высказываний является формулой логики предикатов.