
- •Вопросы по курсу математическая логика и теория алгоритмов
- •Понятие высказывания.
- •Логические операции над высказываниями.
- •Формулы алгебры логики.
- •Равносильности.
- •1. Основные равносильности.
- •2. Равносильности, выражающие одни логические операции через другие.
- •3. Равносильности, выражающие основные законы алгебры логики.
- •Понятия тождественной истинности и ложности.
- •Функции алгебры логики. Свойства совершенства. Закон двойственности. Функции алгебры логики
- •Закон двойственности Закон двойственности
- •Дизъюнктивная нормальная форма (днф и сднф).
- •[Править]сднф
- •Конъюнктивная нормальная форма (кнф и скнф).
- •[Править]скнф
- •Проблема разрешимости.
- •Релейно-контактные схемы.
- •7.1 Релейно-контактные схемы
- •Элементы и множества. Задание множеств.
- •Операции над множествами.
- •Диаграммы Эйлера-Венна.
- •Разбиения и покрытия множеств.
- •Свойства операций над множествами. Свойства операций над множествами
- •Упорядоченные пары. Декартово произведение множеств.
- •Отношения. Композиция, степень и ядро отношения.
- •[Править]Степень отношений
- •Функции. Инъективные, сюръективные и биективные функции.
- •Формулы исчисления высказываний.
- •Доказуемые формулы.
- •Аксиомы исчисления высказываний.
- •Правила вывода в исчислении высказываний.
- •Понятие выводимости формулы.
- •Правила выводимости.
- •Доказательство законов логики.
- •Связь между алгеброй высказываний и исчислением высказываний.
- •Основные понятия логики предикатов.
- •Исчисление предикатов. Основные понятия.
- •Логические операции над предикатами.
- •Кванторные операции.
- •Квантор всеобщности.
- •Квантор существования.
- •Отрицание предложений с кванторами.
- •Формулы логики предикатов.
- •Равносильные формулы логики предикатов.
- •Предваренная нормальная форма.
- •Общезначимость и выполнимость формул логики предикатов.
- •Применение логики предикатов для записи математических высказываний.
- •§9. Применение языка логики предикатов для записи математических предложений, определений, построения отрицания предложений.
- •9.1 Запись математических предложений и определений в виде формул логики предикатов.
- •9.2. Построение противоположный утверждений.
- •9.3 Прямая, обратная и противоположная теоремы.
- •9.4 Необходимые и достаточные условия.
- •9.5. Доказательство теорем методом от противного.
- •Алгоритмы. Основные свойства алгоритмов.
- •Частично рекурсивные и общерекурсивные функции. Тезис Черча.
- •Машина Тьюринга. Тезис Тьюринга.
Логические операции над предикатами.
Пусть дан алфавит T = T1 T2 T3 T4 T5 T6 T7, где T1 = {x; y; z; …} – предметные переменные; T2 = {a; b; c; …} – предметные постоянные; T3, = { &} – лог. связки;, , , T4 = {f1i; f2j; f3k; …} – функциональные символы; T5 = {P1i; P2j; P3k; …} – предикатные символы; T6} – кванторы;; = { T7 = {;; (; )} – вспомогательные символы. Функциональные символы определяют функциональные отношения между предметными переменными и предметными постоянными и формируют термы по правилу:
всякая предметная переменная и предметная постоянная есть терм;
если fin – n-местный функциональный символ и t1, t2, … tn – термы, то fin(t1, t2, … tn) также есть терм;
никаких других термов нет.
Предикатные символы, применённые к термам, порождают элементарные формулы по правилу: если Pin – предикатный символ и t1, t2, … tn – термы, то Pin(t1, t2, … tn) – элементарная формула. Обычные формулы исчисления предикатов определяются по правилу:
всякая элементарная формула есть формула, т. е. Fi = Pin(t1, t2, … tn);
если F1 и F2 F– формулы, то (1); (F1 & F2); (F1 F 2); (F1 F 2); (F1 F 2) также формулы;
если F – формула, а x – предметная переменная, то x(F) и x(F) также формулы;
никаких других формул нет.
Всякая формула, содержащая только предметные постоянные, есть формула исчисления высказываний. Простейшими логическими операциями над предикатами являются отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция. Использование этих логических связок не определяет связывания предметных переменных. Отрицание F(t(1, t2, … tn)) – одноместная операция, посредством которой из данной формулы F(t1, t2, … tn) получают её отрицание. Конъюнкция (F1(t11, t12, … t1n) & F2(t21, t22, … t2n)) есть двухместная операция, посредством которой из двух формул F1 и F2 получают новую формулу F(t11, t12, … t1n, t21, t22, … t2n) = F1 & F2 с числом предметных переменных и постоянных, равным их объединению у исходных формул. Полученная формула имеет значение true т. и только т., когда обе исходные формулы F1 и F2 имеют значение true. Дизъюнкция (F1(t11, t12, … t1n F) 2(t21, t22, … t2n)) есть двухместная операция, посредством которой из двух формул F1 и F2 получают новую формулу F(t11, t12, … t1n, t21, t22, … t2n) = F1 F2 с числом предметных переменных и постоянных, равным их объединению у исходных формул. Полученная формула имеет значение true т. и только т., когда хотя бы одна из исходных формул имеет значение true. Импликация (F1(t11, t12, … t1n F) 2(t21, t22, … t2n)) есть двухместная операция, посредством которой из двух формул F1 и F2 получают новую формулу F(t11, t12, … t1n, t21, t22, … t2n) = F1 F2 с числом предметных переменных и постоянных, равным их объединению у исходных формул. Полученная формула имеет значение false т. и только т., когда F1 имеет значение true, а F2 – false. Эквиваленция (F1(t11, t12, … t1n F) 2(t21, t22, … t2n)) есть двухместная операция, посредством которой из двух формул F1 и F2 получают новую формулу F(t11, t12, … t1n, t21, t22, … t2n) = F1 F2 с числом предметных переменных и постоянных, равным их объединению у исходных формул. Полученная формула имеет значение true т. и только т., когда обе формулы F1 и F2 имеют одно и то же значение true или false.