
- •1. Предмет и задачи биофизики
- •2. Термодинамика
- •3.Биоэнергетика.
- •Электронная схема жизни
- •Трансмембранный электрохимический потенциал – унифицированная форма энергии в клетке
- •Принцип энергетического сопряжения.
- •Законы биоэнергетики.
- •Третий закон биоэнергетики
- •Общая схема энергетических преобразований в клетке Молекулярные механизмы процессов энергетического сопряжения - хемиосмотическая теория Митчела
- •Химические свойства
- •[Править]Роль в организме
- •Пути синтеза
- •Энергетика фотосинтеза
- •Уникальность фотосинтеза как физико-химического процесса.
- •4. Кинетика биологических процессов Кинетическая классификация химических реакций. Типы реакций.
- •Кинетические признаки, лежащие в основе различий простой и сложной реакций
- •Типы простых мономолекулярных и бимолекулярных реакций
- •Особенности кинетики биологических процессов
- •Скорость реакции
- •Зависимость скорости реакции от температуры.
- •Уравнение Аррениуса
- •График Аррениуса для биологических процессов
- •2. Обменно-резонансный.
- •3. Экситонный механизм.
- •Индуктивно-резонансный перенос
- •Что такое свободные радикалы?
- •Классификация свободных радикалов, образующихся в нашем организме
- •Биологические последствия пероксидации липидов
- •9. Биофизика фотобиологических процессов Фотобиологические процессы. Классификация фотобиологических процессов.
- •Участие пигментов в преобразовании энергии квантов
- •Зрение: строение зрительной клетки. Родопсин, фотопревращение родопсина
- •Фотодеструктивные процессы. Их общая характеристика.
- •10. Молекулярная биофизика.
- •Уровни структурной организации белков:
- •Роль слабых взаимодействий ближнего и дальнего порядка в самоорганизации белковой молекулы
- •Структурные и энергетические факторы, определяющие динамическую подвижность белков, потенциал Леннард-Джонса.
- •Конформационные изменения в белке
- •Ферме́нты
- •Ферментативный катализ
- •Электронно-конформационные взаимодействия
- •11. Биофизика механохимических процессов.
- •12.Биофизика мембранных процессов.
- •Мембрана как универсальный компонент биологических систем.
- •Плазматическая мембрана, химический состав биологических мембран
- •Классификация, принципы построения и характеристика мембранных липидов
- •Модельные липидные системы: монослои, мицеллы, липосомы.
- •Фазовые переходы липидов, температура фазового перехода
- •Молекулярная подвижность липидов: сегментарная, вращательная, латеральная, флип-флоп переходы
- •13. Функции биомембран Барьерная функция биомембран
- •Транспорт веществ через биомембраны
- •Движущие силы мембранного транспорта
- •Классификация транспорта веществ через мембраны
- •Механизмы пассивного мембранного транспорта
- •Уравнение Фика
- •Электродиффузионное уравнение Нэрнста-Планка
- •Ионный транспорт через каналы
- •Ионофоры
- •Облегчённая диффузия
- •Транспорт глюкозы в эритроцит
- •Активный транспорт
- •14. Электрические явления в мембранах Ионные токи через возбудимую мембрану
- •Стационарный потенциал Гольдмана-Ходжкина-Катца
- •Изменение мембранного потенциала при возбуждении, потенциал действия.
- •Распространение потенциала действия по нервному волокну
- •Роль локальных токов в распространении пд
- •15. Молекулярные механизмы рецепторных процессов Общая ха-ка процессов передачи информации в клетке: первичные мессенджеры, взаимодействия эффектор-рецептор, пути трансдукции рецепторного сигнала
- •Виды внутриклеточной сигнализации: аденилатциклазный и фосфоинозитидный пути трансдукции рецепторного сигнала
- •Вторичные мессенджеры
Ферментативный катализ
Ферментативный катализ -биокатализ, ускорение химических реакций под влиянием ферментов . В основе жизнедеятельности лежат многочисленные химические реакции расщепления питательных веществ, синтеза необходимых организму химических соединений и трансформации их энергии в энергию физиологических процессов (работа мышц, почек, нервная деятельность и т.п.). Все эти реакции не могли бы происходить с необходимой для живых организмов скоростью, если бы в ходе эволюции не возникли механизмы их ускорения с помощью Ф. к. Эффективность Ф. к. достигается в результате того, что химическая реакция разбивается на ряд энергетически более лёгких промежуточных реакций, в которых участвует фермент. Важнейшая для Ф. к. реакция – образование первичного фермент-субстратного комплекса даёт выигрыш энергии, достаточный для ускорения процесса в целом.
Электронно-конформационные взаимодействия
Под конформационной динамикой (или подвижностью) понимаются относительные смещения белковых групп с амплитудами, заметно превышающими амплитуды валентных колебаний атомов. Изменение характеристик валентных колебаний с характерными временами порядка 0,1 пс и амплитудами до 0,1 А происходит непосредственно в акте изменения электронного состояния групп, что обсуждалось выше в связи с электронно-колебательным взаимодействием. В белках же имеется еще один уровень организации атомных движений - конформационные движения с амплитудами порядка 1 А. Эти движения характеризуются временами (релаксации) от сотен до миллионов пикосекунд. Времена релаксации конформационных движений в отличие от случая валентных колебаний резко увеличиваются при понижении температуры.
Роль конформационных движений также пока неизвестна во всех деталях. С одной стороны, спонтанные тепловые движения белковых групп по конформационным степеням свободы способствуют выходу системы в реакционноспособную конфигурацию. Так, например, для реакций туннельного переноса электрона важно устроить хорошее перекрывание электронных орбиталей между участниками процесса С другой стороны, после акта переноса электрона появляются новые заряженные центры, и изменяется баланс электростатических сил в молекуле белка. Это приводит и к изменению равновесных положений молекулярных групп, то есть к определенному изменению пространственной структуры белка или конформационному переходу
11. Биофизика механохимических процессов.
Основной надмолекулярной двигательной структурой мышечных волокон является саркомер. Саркомеры расположены в мышечном волокне последовательно один за другим.
Основной
надмолекулярной двигательной структурой
мышечных волокон является саркомер.
Саркомеры расположены в мышечном волокне
последовательно один за другим.
Величина
механического напряжения , возникающего
при сокращении мышцы (в определенных
пределах прямо пропорциональна
относительной деформации, согласно
закону Гука. Е = F/S - механическое
напряжение, F - развиваемая сила, S -
площадь поперечного сечения;
=
L/L0 - относительная деформация, L0
-первоначальная длина, L - абсолютная
деформация (удлинение); Е - модуль
упругости (модуль Юнга). Он определяется
величиной механического напряжения в
сокращенной мышце, при увеличении ее
длинны в два раза.
Функциональная роль АТФ в процессе сокращения скелетной мышцы.
- В результате вызываемого миозином гидролиза АТФ поперечные мостики получают энергию для развития тянущего усилия.
- Связывание АТФ с миозином сопровождается отсоединением поперечных мостиков , прикрепленных к актину , и создается возможность повторения цикла их активности.
- Гидролиз АТФ под действием Са2+-АТФазы саркоплазматического ретикулума поставляет энергию для активного транспорта Са2+ в латеральные цистерны саркоплазматического ретикулума, что приводит к снижению цитоплазматического Са2+ до исходного уровня; соответственно, сокращение завершается и мышечное волокно расслабляется.