
- •Билет №21
- •1.1 Прохождение звука через границу раздела сред
- •1.2 Звуковые методы исследования
- •Билет №22
- •2. Импеданс тканей организма. Эквивалентная электрическая схема тканей.
- •Билет №23
- •1. Звук, виды звука, акустические спектр тона. Физические характеристики звука: звуковое давление, интенсивность звука и их значения на слышимость.
- •2. Потенциал покоя. Стационарный потенциал Гольджмана-Ходжкина-Катца
- •Билет №24
- •1. Определение локализации источника звука вертикальной плоскости. Слуховые аппараты и протезы. Тимпанометрия.
- •2. Дисперсия импеданса. Реография.
- •Билет №25 1) . Использование уз в медицине: терапии, хирургии, диагностике. Применение ультразвука в терапии и хирургии
- •2)? Билет№27 1)? 2) Физические процессы, происходящие в тканях организма под воздействием токов и электромагнитных полей.
- •1) Анизотропия при распространении поверхностных волн. Действие ударных волн на биологические ткани
- •17.1. Действие постоянного тока
- •17.2. Действие переменного тока (нч, зч, узч). Пороговые значения
- •17.3. Действие высокочастотного тока
- •Билет №30
- •2.2. Волновой фронт. Скорость и длина волны
- •2.3. Уравнение плоской волны
- •17.5. Действие постоянного электрического поля
- •17.6. Действие переменного электрического поля
- •17.7. Действие электромагнитных волн (свч)
- •Билет №31
- •1. Колебательные движения тела человека при ходьбе. Сложные колебательные движения при поддержании вертикального положения тела.
- •2. Основные группы медицинских электронных приборов и аппаратов.
- •Билет №32
- •Билет №33
- •Билет №34
- •1.2. Свободные колебания. Незатухающие и затухающие колебания
- •2 .Структурная схема съема, передачи и регистрации медико-биологической
- •Билет №35
2. Потенциал покоя. Стационарный потенциал Гольджмана-Ходжкина-Катца
Потенциал покоя - разность электрических потенциалов между внутренней и наружной сторонами клеточной мембраны.
Потенциал покоя обусловлен проницаемостью мембраны для ионов К+. В состоянии покоя плотность потока ионов равна нулю, и уравнение (12.5) принимает следующий вид:
Причина отклонения равновесного потенциала от опытных данных заключается в проницаемости мембраны и для других ионов, которые вносят свой вклад в образование мембранного потенциала. Основной вклад в суммарный поток зарядов, а следовательно, в создание и поддержание потенциала покоя, помимо К+, вносят ионы Na+, Cl-. Суммарная плотность потока этих ионов с учетом их знаков равна
Знак
«-» перед JCl- указывает
на отрицательный заряд.
В стационарном состоянии (когда параметры системы не изменяются) суммарная плотность потока равна нулю, т.е. число различных ионов, проходящих в единицу времени через мембрану внутрь клетки, равно числу ионов, выходящих из клетки через мембрану: J = 0
Здесь,
во избежание сложностей с индексацией,
для обозначения концентрации вместо
буквы с использованы
квадратные скобки: []i и[]0 -
концентрации соответствующих
ионов внутри и вне клетки.
Большая часть сведений о нервных клетках получена при изучении аксона кальмара, достигающего почти миллиметровой толщины. Его изолированные нервные волокна довольно долго сохраняют способность передавать нервные импульсы. Рассчитаем стационарный мембранный потенциал для клеток аксона кальмара.
Билет №24
1. Определение локализации источника звука вертикальной плоскости. Слуховые аппараты и протезы. Тимпанометрия.
Рассмотрим теперь случай, когда источник звука расположен в вертикальной плоскости, ориентированной перпендикулярно прямой, соединяющей оба уха. В этом случае он одинаково удален от обоих ушей и разности фаз не возникает. Значения интенсивности звука, попадающего в правое и левое ухо, при этом совпадают. На рисунке 4.8 показаны два таких источника (А и С). Различит ли слуховой аппарат эти источники? Да. В данном случае это произойдет благодаря особой форме ушной раковины, которая (форма) способствует определению локализации источника звука.
Звук, исходящий от этих источников, падает на ушные раковины под различными углами. Это приводит к тому, что дифракция звуковых волн на ушных раковинах происходит по-разному. В результате на спектр звукового сигнала, попадающего в наружный слуховой проход, накладываются дифракционные максимумы и минимумы, зависящие от положения источника звука. Эти различия и позволяют определять положение источника звука в вертикальной плоскости. По всей видимости, в результате огромного опыта слушания люди научились ассоциировать различные спектральные характеристики с соответствующими направлениями. Это подтверждается опытными данными. В частности, установлено, что специальным подбором спектрального состава звука ухо можно «обмануть». Так, человек воспринимает звуковые волны, содержащие основную часть энергии в области 1 кГц,
|
Рис.
4.8. Различная
локализация источника звука в вертикальной
плоскости
локализованными «сзади» независимо от действительного направления. Звуковая волна с частотами ниже 500 Гц и в области 3 кГц воспринимается локализованной «спереди». Звуковые источники, содержащие большую часть энергии в области 8 кГц, распознаются локализованными «сверху».
Потеря слуха в результате нарушения проведения звука или частичного поражения звуковосприятия может быть компенсирована с помощью слуховых аппаратов-усилителей. В последние годы в этой области происходит большой прогресс, связанный с развитием аудиологии и быстрым внедрением достижений электроакустической аппаратуры на основе микроэлектроники. Созданы миниатюрные слуховые аппараты, работающие в широком частотном диапазоне.
Однако при некоторых тяжелых формах тугоухости и глухоты слуховые аппараты не помогают больным. Это имеет место, например, когда глухота связана с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Такие поражения могут быть вызваны неправильной дозировкой лекарственных препаратов, применяемых для лечения заболеваний, совсем не связанных с лор-болезнями. В настоящее время возможна частичная реабилитация слуха и у таких больных. Для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула. Такое протезирование основной функции улитки осуществляется с помощью кохлеарных протезов.
Тимпанометрия - метод измерения податливости звукопроводящего аппарата слуховой системы под влиянием аппаратного изменения воздушного давления в слуховом проходе.
|
Данный метод позволяет оценить функциональное состояние барабанной перепонки, подвижность цепи слуховых косточек, давление в среднем ухе и функцию слуховой трубы. Исследование начинается с установки зонда с надетым на него ушным вкладышем, который герметично перекрывает слуховой проход в начале наружного слухового прохода. Через зонд в слуховом проходе создается избыточное (+) или недостаточное (-) давление, а затем подается звуковая волна определенной интенсивности. Дойдя до барабанной перепонки, волна частично отражается и возвращается к зонду.
Измерение интенсивности отраженной волны позволяет судить о звукопроводящих возможностях среднего уха. Чем больше интенсивность отраженной звуковой волны, тем меньше подвижность звукопроводящей системы. Мерой механической податливости среднего уха является параметр подвижности, измеряемый в условных единицах.