
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
Наиболее благоприятные условия регулирования скорости двигателя с независимым возбуждением обеспечиваются изменением подведенного к якорной цепи напряжения Uя. Для автоматического регулирования скорости предусматривается питание якорной цепи от индивидуального управляемого преобразователя (системы Г-Д и ТП-Д). Однако при невысоких требованиях к точности и плавности регулирования в промышленных электроприводах используются резисторные схемы включения, получившие название схем шунтирования якоря.
П
отенциометрическая
схема регулирования скорости двигателей
с независимым возбуждением приведена
на рис.8.4,а. При двигателе небольшой
мощности потенциометр может быть
выполнен в виде реостата с подвижным
контактом, путем перемещения которого
подведенное к двигателю напряжение
можно изменять от 0 до Uя=Uном.
Электромеханическая и механическая
характеристики двигателя в этой схеме
могут быть получены по аналогии с
системой УП-Д, если рассматривать
потенциометр как источник регулируемого
напряжения с внутренней ЭДС, равной
напряжению холостого хода:
и внутренним сопротивлением
Подставив (8.13) и (8.14) в (6.6), получим уравнения характеристик в потенциометрической схеме в следующем виде:
Из (8 16) следует, что при перемещении движка потенциометра скорость идеального холостого хода уменьшается пропорционально ш, а модуль жесткости статической характеристики
является переменной, зависящей от ш При ш=0 и ш=1 жесткость ш равна жесткости естественной характеристики двигателя р при питании его от бесконечно мощной сети. При промежуточных значениях ш модуль жесткости m<, причем его минимум может быть определен обычным путем. Продифференцировав знаменатель (8.17) по ш и приравняв производную нулю, нетрудно определить значение ш=0,5, при котором ш имеет минимум:
Полученный результат позволяет построить механические характеристики двигателя в потенциометрической схеме (рис.8.4,б).
Рассматривая (8.18), можно установить, что минимальная жесткость механической характеристики в потенциометрической схеме по модулю тем больше, чем меньше сопротивление потенциометра Rп, т. е. чем больше его мощность.
Так как при регулировании поток двигателя остается постоянным (Ф=Фном), допустимая нагрузка двигателя без учета изменения условий охлаждения постоянна: М=Мном=const. При такой нагрузке двигателя мощность потенциометра превышает номинальную мощность двигателя, так как определяется напряжением сети Uном и наибольшим током потенциометра: Iпmax=Iном+Iпmax>Iном. Наибольший ток шунтирующей части потенциометра Iшmax быстро увеличивается при уменьшении Rп, поэтому минимальная жесткость механических характеристик в рассматриваемой схеме ограничивается приемлемой мощностью потенциометра. Тем самым ограничивается и возможный при данных пределах изменения нагрузки и требуемой точности диапазон регулирования скорости.
Плавность регулирования при небольшой мощности двигателя, позволяющей использовать ползунковый реостат, получается достаточно высокой. Однако с возрастанием мощности двигателя эта возможность исключается и регулирование осуществляется переключением ступеней регулировочных сопротивлений Rш и Rдоб с помощью силовой коммутирующей аппаратуры. При таком регулировании принимать суммарное сопротивление потенциометра Rп=Rш+Rдоб постоянным нецелесообразно, так как сопротивления Rш и Rдоб могут регулироваться независимо. Для этого случая (8.15) и (8.16) удобно представить в виде
Следует иметь в виду, как изменяются характеристики двигателя при изменении Rш при неизменном Rдоб или наоборот. Примем сначала Rдоб=const и будем изменять в (8.19) Rш(ш).
При изменении сопротивления шунтирующего резистора от бесконечности до нуля скорость идеального холостого хода непрерывно уменьшается от 0ном до 0, а жесткость возрастает от ш=с2/(Rя+Rдоб) до ш=. Все эти характеристики пересекаются в одной точке, в которой ток якоря двигателя имеет значение
при скорости в режиме противовключения
Это можно установить, определив напряжение на выводах якоря двигателя при Iя=Iк1 и =к1:
П
одставляя
(8.22) в (8.23), убеждаемся, что в этой точке
на выводах якоря напряжение равно нулю,
так как ЭДС двигателя, работающего в
генераторном режиме, равна падению
напряжения на сопротивлении якоря. При
любом сопротивлении Rш
ток Iш
в этой точке равен нулю, поэтому она
является общей для всего рассматриваемого
семейства характеристик (рис 8 5,а)
Аналогичная общая точка обнаруживается и в семействе характеристик, соответствующем Rш=const и Rдо6=var (рис.8.5,б).
Все эти характеристики пересекаются в точке, где ток якоря определяется соотношением
а скорость имеет значение
В этой точке напряжение на выводах двигателя равно напряжению сети, поэтому ток из сети не потребляется и значение Rд не сказывается на условиях работы двигателя. Графически точка IK1, K1 определяется пересечением реостатной характеристики при RЯ=Rя+Rдоб(Rш=) и естественной характеристики динамического торможения (Rш=0) (прямые 1 и 2 на рис.8.5,a).
Точка Iк2 и к2 определяется пересечением естественной характеристики двигателя 3 (Rдоб=0) и реостатной характеристики динамического торможения 4 (Rдоб=), как показано на рис.8.5,б.
Таким образом, механические характеристики в схеме шунтирования якоря двигателя с независимым возбуждением являются характеристиками двигателя, питаемого от источника регулируемого напряжения с относительно большим и изменяющимся при регулировании напряжения внутренним сопротивлением.