
- •Матрицы.Действия с матрицами
- •3.Миноры и алгебраические дополнения.Обратная матрица
- •1) Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •7. Векторы. Действия с векторам. Коллиниарность векторов
- •8.Линейная зависимость векторов
- •10. Понятие базис.Разложение вектора по базису.
- •11.Декартовая система координат. Направление косинуса вектора.
- •12. Скалярное произведение векторов. Необходимое и достаточное условие.
- •13.Векторное произведение. Необходимое и достаточное условие векторов.
- •14. Смешанное произведение векторов. Компланарность векторов.
- •15. Плоскость в пространстве. Основные уравнения плоскости.
- •17. Прямая в пространстве. Различные уравнения прямой
- •18. Переход от общего уравнения прямой к кононическому.
- •19. Взаимное расположение прямой в пространстве
- •20. Прямая на плоскости. Различные формы уравнений прямой на плоскости.
- •21. Расстояние от произвольной точки до прямой на плоскости. Условия параллельности и перпендикулярности прямых на плоскости.
- •22. Каноническое уравнение прямых второго порядка. Элипс, гипербола, парабола
- •Классификация кривых второго порядка[править | править исходный текст] Невырожденные кривые[править | править исходный текст]
- •Вырожденные кривые[править | править исходный текст]
- •23. Преобразование координат на плоскости. Приведение общего уравнения кривой второго порядка у каноническому виду Преобразование декартовых прямоугольных координат на плоскости
- •24.Множества. Действительные числа. Логически символы. Окрестность точки
- •2. Операции над множествами
- •25. Числовые последовательности. Предел числовой последовательности. Теорема вейерштрасса.
- •26. Определение функции. Способы задания функции. Основные характеристики функций. Элементарные функции.
- •27. Предел функции в точке.
- •Свойства пределов числовых функций[править | править исходный текст]
- •28.Предел функции при X→∞. Односторонние пределы.
- •29. Бесконечно малые и бесконечно большие функции. Свойства бесконечно малые и бесконечно большие функций.
- •30. Связь бесконечно малых и бесконечно больших. Их свойства.
- •31. Теорема о связи между функцией, ее пределом и бесконечно малой величиной.
- •32. Признак существования предела функции. Первый замечательный предел. Первый замечательный предел
- •33. Основные свойства пределов функций. Основные типы неопределенностей.
- •Основные неопределенности пределов и их раскрытие.
- •34. Второй замечательный предел. Три формы записи второго замечательного предела.
- •35. Эквивалентные бесконечно малые. Сравнение бесконечно малых.
- •36. Непрерывность функции в точке. Три определения непрерывности.
- •37. Точки разрыва функции и их классификация
- •38. Основные теоремы о непрерывных функциях.
- •39. Свойства функций непрерывных на отрезке. Геометрическая интерпретация этих свойств.
Основные неопределенности пределов и их раскрытие.
С непосредственным вычислением пределов основных элементарных функций разобрались.
При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называютнеопределенностями.
Перечислим
все основные
виды неопределенностей:
ноль делить на ноль
(0
на 0),
бесконечность делить на бесконечность
,
ноль умножить на бесконечность
,
бесконечность минус бесконечность
,
единица в степени бесконечность
,
ноль в степени ноль
,
бесконечность в степени ноль
.
ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.
Раскрывать неопределенности позволяет:
упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
использование замечательных пределов;
применение правила Лопиталя;
использование замены бесконечно малого выражения ему эквивалентным(использование таблицы эквивалентных бесконечно малых).
Сгруппируем неопределенности в таблицу неопределенностей. Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).
Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.
34. Второй замечательный предел. Три формы записи второго замечательного предела.
Второй
замечательный предел имеет
вид:
или
в другой записи
В случае второго замечательного предела имеем дело с неопределенностью вида единица в степени бесконечность .
Разберем несколько примеров нахождения предела по второму замечательному пределу сподробнымоприсанием решения.
Пример.
Вычислить
предел
Решение.
Подставляем
бесконечность:
Пришли к неопределенности единица в степени бесконечность. Смотрим в таблицу неопределенностей для определения метода решения и останавливаемся на применении второго замечательного предела.
Сделаем
замену переменных. Пусть
Если
,
то
Исходный
предел после замены примет вид:
Ответ:
Пример.
Вычислить
предел
Решение.
Подставляем
бесконечность:
Пришли
к неопределенности единица в степени
бесконечность, которая указывает на
применение второго замечательного
предела. Выделим целую часть в основании
показательно степенной функции:
Тогда
предел запишется в виде:
Сделаем
замену переменных. Пусть
Если
,
то
Исходный
предел после замены примет вид:
В преобразованиях были использованы свойства степени и свойства пределов.
Ответ:
Пример.
Вычислить
предел
Решение.
Преобразуем
функцию, чтобы применить второй
замечательный предел:
Сейчас
домножим показатель на
и
разделим на это же выражение, затем
используем свойства степени:
Так
как показатели степени числителя и
знаменателя дроби
одинаковые
(они равны 6),
то предел этой дроби на бесконечности
равен отношению коэффициентов при
старших степенях (см.
непосредственное вычисление пределов):
Если
произвести замену
,
то получим второй замечательный предел
в чистом виде, следовательно,
Ответ: