
- •В.И.Бабакин
- •«Электрический привод»
- •2.1 Электродвигатели постоянного тока независимого возбуждения………...…26
- •2.2 Двигатели постоянного тока последовательного возбуждения……….…….55
- •2.3 Двигатели постоянного тока смешанного возбуждения..…………… ….. .. .64
- •5. Электрическая часть силового канала эп. Основные элементы электрической части силового канала эп и их классификация……………………….…………..107
- •6 Информационный канал электропривода
- •6.1Назначение, функции и основные элементы информационного канала электропривода………………………………………………………………………132
- •Рабочая программа
- •Объем дисциплины и виды учебной работы
- •4.2 Содержание разделов дисциплины
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Раздел 4.
- •Раздел 5.
- •Перечень практических занятий
- •Лабораторный практикум
- •Самостоятельная работа студентов (срс)
- •Учебно-методическое обеспечение дисциплин Основная литература
- •Дополнительная литература
- •1 Электропривод. Основные понятия и определения. Структура электропривода. Основные тенденции развития электропривода. Требования, предъявляемые к электроприводам. Классификация электроприводов.
- •Силовой канал электропривода
- •1.1.1 Механическая часть силового канала электропривода
- •1.1.1.1 Моменты и силы, действующие в эп
- •1.1.1.2 Механические характеристики элементов механической части силового канала эп
- •1.1.1.3 Обобщенная графическая модель электропривода. Совместная (совмещенная) механическая характеристика электропривода. Избыточный (динамический) момент. Статическая устойчивость.
- •1.1.1.4 Механическая мощность
- •1.1.1.5 Динамические механические характеристики электропривода
- •1.1.1.6 Анализ механической части силового канала электропривода
- •1.1.1.7 Математические модели механической части силового канала электропривода
- •1.1.1.7.1 Двухмассовая модель механической части силового канала электропривода
- •1.1.1.7.2 Одномассовая модель механической части силового канала электропривода
- •2 Электромеханические преобразователи
- •2.1 Электродвигатели постоянного тока независимого возбуждения
- •2.1.1 Естественные электромеханические и механические характеристики дпт с нв
- •2.1.2 Искусственные электромеханические и механические характеристики дпт нв
- •Рассмотрим семейство искусственных характеристик:
- •1) Искусственные характеристики дпт нв при введении добавочного сопротивления в цепь якоря. Такое семейство характеристик называют реостатным (рис. 2.3).
- •Расчет и построение электромеханических и механических характеристик дпт нв по паспортным данным двигателя
- •Расчет и построение естественной и реостатной электромеханических и механических характеристик дпт нв в именованных единицах
- •Расчет и построение естественной и реостатной электромеханических и механических характеристик дпт нв в относительных единицах
- •Режимы работы дпт нв
- •2.1.8 Пуск дпт нв
- •Реостатный пуск
- •2.1.9 Принципы расчета ступеней пусковых реостатов дпт нв
- •2.1.10 Графический расчет ступеней пусковых реостатов
- •2.1.11 Аналитический расчет ступеней пусковых реостатов
- •2.1.12 Тормозные режимы дпт нв
- •Рекуперативное торможение
- •2.1.12.2 Торможение противовключением
- •Динамическое торможение
- •2.2 Двигатели постоянного тока последовательного возбуждения
- •2.2.1 Естественные и искусственные характеристики двигателей последовательного возбуждения в двигательном режиме
- •2.2.2 Пуск двигателей последовательного возбуждения. Механические характеристики двигателей последовательного возбуждения при пуске
- •2.2.3 Торможение двигателей последовательного возбуждения. Механические характеристики в тормозном режиме
- •2.3 Двигатели постоянного тока смешанного возбуждения
- •Лекция 12
- •Механические характеристики ад в различных режимах
- •Устойчивость ад
- •Понятие естественной и искусственной механических характеристик ад
- •Расчет и построение естественных и искусственных механической характеристики ад
- •В частности для номинального режима уравнение (7) принимает вид
- •Расчет и построение естественной механической характеристики ад по паспортным данным
- •3.5 Пуск ад. Механические характеристики ад при пуске
- •Реостатный пуск ад с фазным ротором
- •3.6.1Графический метод расчета ступеней пусковых реостатов
- •При нормальном пуске принимаем момент переключения
- •Аналитический расчет ступеней пусковых реостатов
- •Лекция 14
- •Тормозные режимы ад. Механические характеристики ад в тормозных режимах
- •3.7.1Рекуперативное торможение
- •3.7.2Торможение противовключением
- •3.7.2Динамическое торможение
- •4 .Синхронные двигатели (сд)
- •4.1 Механические характеристики сд в двигательном режиме
- •Электрическая схема замещения сд. Уравнение электрического состояния. Угловая характеристика сд
- •Торможение сд. Механические характеристики в тормозных режимах
- •Торможение противовключением
- •Рекуперативное торможение
- •Динамическое торможение
- •Форсировка сд
- •Лекция 17
- •5. Электрическая часть силового канала эп. Основные элементы электрической части силового канала эп и их классификация
- •Преобразовательные устройства классифицируют по следующим признакам
- •5.1Электромашинные преобразователи в эп с дпт
- •5.2 Статические преобразователи в эп с дпт
- •5.2.1Управляемые выпрямители (ув)
- •5.3 Электрическая часть силового канала эп с двигателями переменного тока
- •5.3.1Преобразовательные устройства. Регуляторы напряжения (рн)
- •Преобразователи частоты (пч)
- •5.3.3.1Классификация преобразователей частоты
- •Принципы и законы частотного регулирования
- •Лекция 20
- •6 Информационный канал электропривода
- •6.1Назначение, функции и основные элементы информационного канала электропривода
- •6.2 Система импульсно фазового управления (сифу)
- •6.2.1Электромагнитные сифу
- •6.2.1.1Усилитель формирователь импульсов (уфи)
- •Полупроводниковые сифу
- •Рабочая программа
- •Раздел 1
- •Раздел2
- •Экзаменационные вопросы по курсу “Электрический привод” для специальности 180400 “Электропривод и автоматика промышленных установок и технологических комплексов” (аэ)
- •25.Двигатели постоянного тока последовательного возбуждения.
3.7.2Динамическое торможение
Динамическое торможение является наиболее универсальным и широко применяемым способом торможения электроприводов с АД.
Для реализации динамического торможения статорную обмотку АД отключают от трехфазного переменного напряжения и подключают к источнику, с помощью которого в статорной обмотке создается постоянное неподвижное магнитное поле (статическое магнитное поле). Статическое магнитное поле, взаимодействуя с вращающимся ротором, будет создавать электромагнитный момент, который в соответствии с принципом Ленца, будет направлен против направления вращения двигателя, т. е. будет являться тормозным. Для создания статического магнитного поля статора может быть использовано два метода:
Первый метод заключается в подключении к сети постоянного напряжения.
~U
Рисунок 3.25 – Динамическое торможение с подключением к сети постоянного напряжения. КЛ – линейный контактор, КТ – контактор торможения.
При работе в двигательном режиме контакты КЛ замкнуты, КТ разомкнуты. Для перехода в режим динамического торможения размыкают контакты КЛ и одновременно замыкают контакты КТ.
Второй метод заключается в использовании батарей статических конденсаторов.
~U
Рисунок 3.26 – Динамическое торможение с использованием батарей статических конденсаторов
Особенностью режима динамического торможения является то, что при полной остановке двигателя, т. е. угловая скорость вращения равна нулю, тормозной момент МТ в соответствии с принципом Ленца также будет равен нулю. Это обеспечивает процессу торможения важное преимущество, как точность.
Механические характеристики при динамическом торможении показаны на рис. 3.27.
Рисунок 3.27 – Механические характеристики при динамическом торможении
Энергетические потоки в процессе динамического торможения имеют следующие направления: кинетическая энергия механизма направлена от механизма к двигателю (генераторный режим); электрическая энергия от источника трехфазного переменного напряжения отсутствует, т. е. равна нулю; электрическая энергия постоянного напряжения не учитывается. При этом кинетическая энергия механизма преобразуется в тепловую энергию, которая в свою очередь рассеивается в двигателе. Поэтому, как правило, тепловой режим двигателя при динамическом торможении может быть напряженным, но не опасным и в любом случае по сравнению с режимом торможения противовключением более легким.
Таким образом, преимуществом динамического торможения является относительная простота реализации и высокая точность остановки двигателя. Недостатком является относительно низкая энергетическая эффективность.
Для реализации динамического торможения чаще используют метод с подключением к сети постоянного напряжения.
Второй метод (динамическое торможение с использованием батарей статических конденсаторов) требует для создания необходимого по величине статического магнитного поля конденсаторов большой емкости, что существенно ухудшает массогабаритные показатели электропривода.
Необходимо отметить, что электропривод, в котором реализуется динамическое торможение, должен обладать, во-первых, необходимым быстродействием, а во-вторых, тепло должно распространяться по статорным обмоткам двигателя по возможности равномерно.
Различают три способа подключения статорной обмотки к источнику постоянного напряжения:
или
или
или
Первому требованию, а именно, быстродействию, соответствует первая схема, так как в ней производится наименьшее количество переключений. Второму требованию соответствует вторая схема, так как в этом случае по всем трем фазам статорной обмотки будет протекать один и тот же ток, и как следствие они будут нагреваться равномерно.
Лекция 15