Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lenochka_shpory_tvms.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
240.48 Кб
Скачать

23. Интервальная и точечная оценки вероятности биномиального распределения по

относительной частоте. Пример.

Оценки неизвестных параметров бывают двух видов - ТОЧЕЧНЫЕ И ИНТЕРВАЛЬНЫЕ.

ТОЧЕЧНАЯ ОЦЕНКА - оценка имеющая конкретное числовое значение. Например, среднее арифметическое:

X = (x1+x2+...+xn)/n,

где: X - среднее арифметическое (точечная оценка МО);

x1,x2,...xn - выборочные значения; n - объем выборки.

ИНТЕРВАЛЬНАЯ ОЦЕНКА - оценка представляемая интервалом значений, внутри которого с задаваемой исследователем вероятностью находится истинное значение оцениваемого параметра. Интервал в интервальной оценке называется ДОВЕРИТЕЛЬНЫМ ИНТЕРВАЛОМ, задаваемая исследователем вероятность называется ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТЬЮ. В практике статистических вычислений применяются стандартные значения доверительной вероятности: 0,95, 0,98 и 0,99 (95%, 98% и 99% соответственно). Например, интервальная оценка МО (3,8) при доверительной вероятности 0,95. Это означает, что МО лежит в пределах от 3 до 8 с вероятностью 0,95, следовательно вероятность того, что МО меньше 3 или больше 8 не превышает 0,05.

Очевидно, что чем выше доверительная вероятность, тем выше точность оценки, но шире доверительный интервал. Отсюда следует - ДЛЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ВЕРОЯТНОСТЬ ТОГО, ЧТО ТОЧЕЧНАЯ ОЦЕНКА (ширина доверительного интервала равна 0) СОВПАДЕТ С ЛЮБЫМ ЗАДАННЫМ ЗНАЧЕНИЕМ ИЛИ ОЦЕНИВАЕМЫМ ПАРАМЕТРОМ РАВНА 0.

Таким образом, точечная оценка имеет смысл лишь тогда, когда приведена характеристика рассеяния этой оценки (дисперсия). В противном случае она может служить лишь в качестве исходных данных для построения интервальной оценки.

Вычисление интервальной оценки рассмотрим на примере интервальной оценки МО для случайной величины подчиняющейся нормальному закону распределения. Границы доверительного интервала определятся по формулам:

Xmin = X - T(ν,P)*S/(n)1/2

Xmax = X + T(ν,P)*S/(n)1/2

где: Xmin, Xmax - нижняя и верхняя границы интервала;

X - среднее арифметическое (точечная оценка МО);

n - объем выборки;

T(ν,P) - поправочный коэффициент, называемый T-статистика, величина которого определяется значением задаваемой доверительной вероятности p и числом степеней свободы ν (ν=n-1);

S = [(x1 - X)2 + (x2 - X)2 + ... + (xn - X)2]1/2 - корень квадратный из оценки дисперсии случайной величины X

ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ СТАТИСТИКИ - число независимых случайных величин, по которым вычисляется данная статистика. Например, при вычислении среднего арифметического все случайные величины в выборке x1,x2,...,xn независят друг от друга. В оценке S из n отклонений вида (xi - X)2 независимы только n-1 (т.к. в формуле присутствует X, то по любому набору n-1 отклонений вычисляется n-ое).

24. Основы регрессивного анализа. Метод наименьших квадратов.

Метод наименьш квадратов - оценка определяется из условия минимизации суммы квадратов отклонений выборочных данных от определяемой оценки.

24. Регрессио́нный (линейный) анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция), а не причинно-следственные отношения.

Цели регрессионного анализа

  1. Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)

  2. Предсказание значения зависимой переменной с помощью независимой(-ых)

  3. Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Математическое определение регрессии

Строго регрессионную зависимость можно определить следующим образом. Пусть ,  — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений определено условное математическое ожидание

(уравнение линейной регрессии в общем виде),

то функция называется регрессией величины Y по величинам , а её график — линией регрессии по , или уравнением регрессии.

Зависимость от проявляется в изменении средних значений Y при изменении . Хотя при каждом фиксированном наборе значений величина остаётся случайной величиной с определённым рассеянием.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении , используется средняя величина дисперсии Y при разных наборах значений (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

Метод наименьших квадратов (расчёт коэффициентов)

На практике линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов, когда минимизируется сумма квадратов отклонений реально наблюдаемых от их оценок (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):

(M — объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда .