Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elementy_kombinatoriki.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.72 Mб
Скачать

25. Статистические гипотезы, постановка задачи построения критерия проверки статистической гипотезы. Уровень значимости и мощность критерия.

Статистическая гипотеза - любое предположение о виде или параметрах неизвестного з-на р-я. Различают простую и сложную статистич гипотезы.

Простая гипотеза, в отличие от сложной, полностью определяет теоретическую ф-ю р-я случ велич. Проверяемую гипотезу наз-тся нулевой (или основной) и обозначают Н0. Наряду с нулевой гипотезой рассматривают конкурирующую, гипотезу Н1, являющуюся логическим отрицанием Н0. Н0 и Н1 - две возможности выбора, осуществляемого в задачах проверки статистических гипотез. Суть проверки статистической гипотезы: находится характеристика θn – по выборке, θ критическое. Если θn>θкр – Н0 отвергается, наоборот – принимается. Вер-сть α допустить ошибку 1-го рода, т.е. отвергнуть гипотезу, когда она верна, называется уровнем значимости. Вер-сть допустить ошибку 2-го рода, т.е. принять гипотезу, когда она неверна, обычно обозначают β. Вер-сть (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н0, когда она неверна, наз-тся мощностью критерия.

В общем случае гипотезы подобного типа имеют вид

Но: θ=Δо, где θ - некоторый параметр исследуемого

распределения, а Δо - область его конкретных значений, состоящая в частном случае из одного значения. При проверке гипотезы указанного типа можно

использовать тот же подход, что при проверке статистич гипотез. Но: а=ао, против альтернативной Н1: а=а1>a0. Соответствующие критерии проверки гипотез о числовых значениях параметров нормального закона приведены в табл.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]