
- •1. Преимущества электрической энергии. Закон электромагнитной индукции.
- •1. Закон электромагнитной индукции
- •2. Электрическая цепь и ее элементы. Закон Ома. Законы Кирхгофа.
- •3. Закон полного тока. Закон Ома для магнитной цепи.
- •4. Получение синусоидальной э.Д.С. Синусоидальные величины, их мгновенные и амплитудные значения.
- •5. Действующие и средние значения синусоидальных величин
- •6. Изображение синусоидальных функций вращающимися векторами. Графики мгновенных значений. Векторные диаграммы.
- •7. Активная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •8. Индуктивная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •9. Емкостная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •4. Неразветвленная цепь переменного тока с r, l, c
- •11. Резонанс напряжений, условия резонанса и его признаки. Векторная диаграмма.
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •12. Разветвленная цепь однофазного тока. Треугольники токов и проводимостей.
- •13. Расчет разветвленной цепи переменного тока методом проводимостей.
- •14. Резонанс токов в простейшей разветвленной цепи. Условие и признаки. Векторная диаграмма.
- •15. Мощность однофазного тока. Треугольник мощностей. Коэффициент мощности и его значение.
- •16. Символический метод расчета цепей синусоидального тока. Сущность метода. Комплексы напряжения, тока, сопротивления и проводимости.
- •17. Законы Ома и Кирхгофа в символической форме.
- •18. Система трехфазного тока и ее преимущества. Получение трехфазного тока. Временная и векторная диаграммы э.Д.С. Представление векторной диаграммы на комплексной плоскости.
- •19. Соединение потребителей электроэнергии звездой с нейтральным проводом. Соотношение между фазными и линейными напряжениями и токами. Графическое определение тока в нейтральном проводе.
- •4. Симметричная нагрузка
- •20. Соединение потребителей электроэнергии звездой без нейтрального провода. Случай симметричной и несимметричной нагрузки. Векторные диаграммы. Напряжение смещения нейтрали.
- •21. Соединение потребителей электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами. Случаи симметричной и несимметричной нагрузки.
- •22. Мощность трехфазного тока. Выражение для активной, реактивной и полной мощности при несимметричной и симметричной нагрузках.
- •23. Закон электромагнитной индукции. Устройство и принцип действия однофазного трансформатора.
- •24. Режим холостого хода трансформатора.
- •2. Опыт хх трансформатора
- •25. Работа однофазного трансформатора под нагрузкой. Уравнение для комплексов токов и уравнения равновесия напряжений для первичной и вторичной цепей.
- •Упрощенная схема замещения Трансформатора
- •27. Внешние хар-ки трансформатора, потери мощности и к.П.Д. Примеры применения трансформаторов на путевых и подъемно-транспортных машинах.
- •28. Принцип действия и устройство сварочного трансформатора. Внешние хар-ки трансформатора.
- •2. Сварочный трансформатор
- •2. Устройство асинхронного двигателя
- •31.Работа асинхронного двигателя под нагрузкой. Зависимости частоты, эдс и индуктивного сопротивления ротора от скольжения.
- •33.Энергетическая диаграмма и кпд асинхронного двигателя.
- •2. Энергетическая диаграмма ад
- •35.Вывод зависимости для электромагнитного вращающего момента ад. Анализ хар-к м(s) и n(м).
- •36.Рабочие хар-ки асинхронного двигателя, их анализ.
- •37.Способы пуска асинхронного двигателя с короткозамкнутым ротором.
- •1.Пуск асинхронного двигателя
- •38.Реверсирование асинхронного двигателя. Его сущность и принципиальная схема.
- •39.Способы регулирования частоты вращения асинхронного двигателя.
- •40.Торможение асинхронного двигателя. Анализ способа с помощью механических хар-к.
- •2. Торможение ад
- •41.Устройство и принцип действия 3-х фазного синхронного генератора. Холостой ход генератора.
- •2. Холостой Ход сг
- •42. Работа синхронного генератора под нагрузкой
- •43. Устройство машин постоянного тока.
- •44. Принцип действия генератора постоянного тока
- •Характеристика холостого хода синхронного генератора
- •47. Способы пуска электродвигателей постоянного тока. Пусковая диаграмма при реостатном пуске.
- •49.Реверсирование электродвигателей постоянного тока.
- •50. Способы торможения электродвигателя постоянного тока, анализ с помощью механических хар-к. Недостатки и достоинства..
- •51. Полупроводниковые приборы. Диоды.
- •Типы диодов[править | править исходный текст]
- •52. Транзисторы и тиристоры. Основные параметры.
- •Классификация транзисторов[править | править исходный текст]
- •По основному полупроводниковому материалу[править | править исходный текст]
- •По структуре[править | править исходный текст]
- •Устройство и основные виды тиристоров[править | править исходный текст]
- •53. Полупроводниковые выпрямители.
- •54 Однополупериодная система выпрямления однофазного тока.
- •55. Двухполупериодная мостовая система выпрямления однофазного тока.
- •56. Мостовая схема выпрямления трехфазного тока.
- •57. Понятие о сглаживающих фильтрах.
- •58. Определение и классификация Электропривода (эп).
- •59. Режимы работы эд
- •60. Расчет мощности эд в системе эп
- •61. Аппаратура управления Электроприводом
- •62. Пуск ад с кз ротором
5. Действующие и средние значения синусоидальных величин
О синусоидальных токах, напряжениях и ЭДС судят по их среднеквадратичным значениям.
Рассмотрим синусоидальный ток
Среднеквадратичное значение такого тока равно:
|
Действующее значение переменного тока. |
ОПРЕДЕЛЕНИЕ: В Электротехнике среднеквадратичные значения тока, напряжения, ЭДС называется действующими.
Под действующим значением переменного тока понимается такое значение постоянного тока, которое по тепловому действию за период эквивалентно переменному.
|
Аналогично действующие значения
Напряжения –
ЭДС –
|
ВАЖНО: Электроизмерительные приборы отградуированы в действующих значениях переменного тока.
При анализе электровыпрямительных установок используются средние значения
Рассмотрим синусоидальную ЭДС
Среднее значение такой ЭДС равно:
|
Среднее значение переменной ЭДС. |
|
Средние значение переменных тока и напряжения. |
Поверхностный эффект
Рассмотрим проводник круглый по сечению, по которому протекает изменяющийся во времени ток. Этот ток создает изменяющийся во времени магнитный поток, силовые линии которого замыкаются как по воздуху, так и внутри проводника.
|
По принципу Ленца индуктируемая ЭДС направлена против изменения магнитного потока. В результате центре проводника плотность тока будет минимальна, а на поверхности – максимальна. Происходит как бы выталкивание переменного тока на поверхность проводника. Это явление и называется поверхностным эффектом. |
Полезное сечение проводника как бы уменьшается. Поэтому электрическое сопротивление одного и того же проводника переменному току больше, чем постоянному.
Различают два вида сопротивления: |
R – омическое сопротивление постоянному току; r – активное сопротивление переменному току. |
Однако при
стандартной промышленной частоте 50 Гц
для проводников, выполненных из Алюминия
или Меди при диаметре
10 мм
поверхностным
эффектом можно пренебречь.
6. Изображение синусоидальных функций вращающимися векторами. Графики мгновенных значений. Векторные диаграммы.
При анализе работы электрических цепей переменного тока приходится складывать синусоидальные функции времени одной и той же частоты, но имеющие разные амплитуды и начальные фазы. Это удобно выполнять если синусоидальные функции изображать вращающимися векторами.
Пусть нам задано мгновенное значение в виде:
|
|
Рассмотрим два момента времени: t=0; t=t1;
Справа изобразим график синусоидальной ЭДС, слева – окружность, радиус которой ОА равен амплитудному значению ЭДС ЕМ .
Радиус-Вектор ОА=ЕМ вращается с угловой скоростью , равной угловой частоте изменения ЭДС. Тогда в любой момент времени по радиус-вектору можно определить мгновенный значения ЭДС, которые будут равны проекции длины вектора на вертикальную ось Y.
Например: |
|
|
|
Замена синусоидальной функции времени вращающимся вектором позволяет перейти от алгебраического сложения функций к геометрическому сложению изображающих их векторов.
Например, надо сложить синусоидально изменяющиеся во времени тока одной частоты
Для этого необходимо
на одном графике изобразить соответствующие
вектора:
|
|
Результирующий вектор соответствует значению суммарного переменного тока. Его длина равна амплитудному значению результирующего тока.
ОПРЕДЕЛЕНИЕ: Векторной диаграммой называется совокупность нескольких векторов, изображающих на одном графике синусоидальные функции времени одной частоты.
На практике, при построении векторных диаграмм длину вектора принимают равной не амплитудному, а действующему значению.
Один из векторов принимают за исходный, а остальные строятся по отношению к нему с соответствующим сдвигом фаз, при этом отпадает необходимость использовать оси Х и Y.