
- •1. Преимущества электрической энергии. Закон электромагнитной индукции.
- •1. Закон электромагнитной индукции
- •2. Электрическая цепь и ее элементы. Закон Ома. Законы Кирхгофа.
- •3. Закон полного тока. Закон Ома для магнитной цепи.
- •4. Получение синусоидальной э.Д.С. Синусоидальные величины, их мгновенные и амплитудные значения.
- •5. Действующие и средние значения синусоидальных величин
- •6. Изображение синусоидальных функций вращающимися векторами. Графики мгновенных значений. Векторные диаграммы.
- •7. Активная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •8. Индуктивная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •9. Емкостная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •4. Неразветвленная цепь переменного тока с r, l, c
- •11. Резонанс напряжений, условия резонанса и его признаки. Векторная диаграмма.
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •12. Разветвленная цепь однофазного тока. Треугольники токов и проводимостей.
- •13. Расчет разветвленной цепи переменного тока методом проводимостей.
- •14. Резонанс токов в простейшей разветвленной цепи. Условие и признаки. Векторная диаграмма.
- •15. Мощность однофазного тока. Треугольник мощностей. Коэффициент мощности и его значение.
- •16. Символический метод расчета цепей синусоидального тока. Сущность метода. Комплексы напряжения, тока, сопротивления и проводимости.
- •17. Законы Ома и Кирхгофа в символической форме.
- •18. Система трехфазного тока и ее преимущества. Получение трехфазного тока. Временная и векторная диаграммы э.Д.С. Представление векторной диаграммы на комплексной плоскости.
- •19. Соединение потребителей электроэнергии звездой с нейтральным проводом. Соотношение между фазными и линейными напряжениями и токами. Графическое определение тока в нейтральном проводе.
- •4. Симметричная нагрузка
- •20. Соединение потребителей электроэнергии звездой без нейтрального провода. Случай симметричной и несимметричной нагрузки. Векторные диаграммы. Напряжение смещения нейтрали.
- •21. Соединение потребителей электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами. Случаи симметричной и несимметричной нагрузки.
- •22. Мощность трехфазного тока. Выражение для активной, реактивной и полной мощности при несимметричной и симметричной нагрузках.
- •23. Закон электромагнитной индукции. Устройство и принцип действия однофазного трансформатора.
- •24. Режим холостого хода трансформатора.
- •2. Опыт хх трансформатора
- •25. Работа однофазного трансформатора под нагрузкой. Уравнение для комплексов токов и уравнения равновесия напряжений для первичной и вторичной цепей.
- •Упрощенная схема замещения Трансформатора
- •27. Внешние хар-ки трансформатора, потери мощности и к.П.Д. Примеры применения трансформаторов на путевых и подъемно-транспортных машинах.
- •28. Принцип действия и устройство сварочного трансформатора. Внешние хар-ки трансформатора.
- •2. Сварочный трансформатор
- •2. Устройство асинхронного двигателя
- •31.Работа асинхронного двигателя под нагрузкой. Зависимости частоты, эдс и индуктивного сопротивления ротора от скольжения.
- •33.Энергетическая диаграмма и кпд асинхронного двигателя.
- •2. Энергетическая диаграмма ад
- •35.Вывод зависимости для электромагнитного вращающего момента ад. Анализ хар-к м(s) и n(м).
- •36.Рабочие хар-ки асинхронного двигателя, их анализ.
- •37.Способы пуска асинхронного двигателя с короткозамкнутым ротором.
- •1.Пуск асинхронного двигателя
- •38.Реверсирование асинхронного двигателя. Его сущность и принципиальная схема.
- •39.Способы регулирования частоты вращения асинхронного двигателя.
- •40.Торможение асинхронного двигателя. Анализ способа с помощью механических хар-к.
- •2. Торможение ад
- •41.Устройство и принцип действия 3-х фазного синхронного генератора. Холостой ход генератора.
- •2. Холостой Ход сг
- •42. Работа синхронного генератора под нагрузкой
- •43. Устройство машин постоянного тока.
- •44. Принцип действия генератора постоянного тока
- •Характеристика холостого хода синхронного генератора
- •47. Способы пуска электродвигателей постоянного тока. Пусковая диаграмма при реостатном пуске.
- •49.Реверсирование электродвигателей постоянного тока.
- •50. Способы торможения электродвигателя постоянного тока, анализ с помощью механических хар-к. Недостатки и достоинства..
- •51. Полупроводниковые приборы. Диоды.
- •Типы диодов[править | править исходный текст]
- •52. Транзисторы и тиристоры. Основные параметры.
- •Классификация транзисторов[править | править исходный текст]
- •По основному полупроводниковому материалу[править | править исходный текст]
- •По структуре[править | править исходный текст]
- •Устройство и основные виды тиристоров[править | править исходный текст]
- •53. Полупроводниковые выпрямители.
- •54 Однополупериодная система выпрямления однофазного тока.
- •55. Двухполупериодная мостовая система выпрямления однофазного тока.
- •56. Мостовая схема выпрямления трехфазного тока.
- •57. Понятие о сглаживающих фильтрах.
- •58. Определение и классификация Электропривода (эп).
- •59. Режимы работы эд
- •60. Расчет мощности эд в системе эп
- •61. Аппаратура управления Электроприводом
- •62. Пуск ад с кз ротором
Устройство и основные виды тиристоров[править | править исходный текст]
Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.
Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою —катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором[1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.
Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как их ВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.
Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.
53. Полупроводниковые выпрямители.
Общие сведения
Определение: ПВ предназначены для преобразования переменного тока в постоянный.
ТИПИЧНАЯ БЛОК-СХЕМА ВЫПРЯМИТЕЛЬНО УСТАНОВКИ
(4 прямоугольника, каждый обозначает элемент установки, включая нагрузку)
сеть
СФ
Н
Тр |
Т р – трансформатор
диоды (вентили)
СФ – сглаживающий фильтр
Н - нагрузка |
Трансформатор предназначен для изменения напряжения питающей сети до величины, которая обеспечивает требуемое выпрямленное напряжение.
Выпрямленное напряжение имеет переменную составляющую, называемую пульсации.
Для уменьшения пульсаций между диодами и нагрузкой включается сглаживающий фильтр (СФ);
В зависимости от числа фаз питающей сети. характера нагрузки, а также требований к выпрямленному току Диоды соединяются в различные системы.