
- •1. Преимущества электрической энергии. Закон электромагнитной индукции.
- •1. Закон электромагнитной индукции
- •2. Электрическая цепь и ее элементы. Закон Ома. Законы Кирхгофа.
- •3. Закон полного тока. Закон Ома для магнитной цепи.
- •4. Получение синусоидальной э.Д.С. Синусоидальные величины, их мгновенные и амплитудные значения.
- •5. Действующие и средние значения синусоидальных величин
- •6. Изображение синусоидальных функций вращающимися векторами. Графики мгновенных значений. Векторные диаграммы.
- •7. Активная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •8. Индуктивная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •9. Емкостная нагрузка в цепи переменного тока. Закон Ома. Временная и векторная диаграммы.
- •4. Неразветвленная цепь переменного тока с r, l, c
- •11. Резонанс напряжений, условия резонанса и его признаки. Векторная диаграмма.
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •12. Разветвленная цепь однофазного тока. Треугольники токов и проводимостей.
- •13. Расчет разветвленной цепи переменного тока методом проводимостей.
- •14. Резонанс токов в простейшей разветвленной цепи. Условие и признаки. Векторная диаграмма.
- •15. Мощность однофазного тока. Треугольник мощностей. Коэффициент мощности и его значение.
- •16. Символический метод расчета цепей синусоидального тока. Сущность метода. Комплексы напряжения, тока, сопротивления и проводимости.
- •17. Законы Ома и Кирхгофа в символической форме.
- •18. Система трехфазного тока и ее преимущества. Получение трехфазного тока. Временная и векторная диаграммы э.Д.С. Представление векторной диаграммы на комплексной плоскости.
- •19. Соединение потребителей электроэнергии звездой с нейтральным проводом. Соотношение между фазными и линейными напряжениями и токами. Графическое определение тока в нейтральном проводе.
- •4. Симметричная нагрузка
- •20. Соединение потребителей электроэнергии звездой без нейтрального провода. Случай симметричной и несимметричной нагрузки. Векторные диаграммы. Напряжение смещения нейтрали.
- •21. Соединение потребителей электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами. Случаи симметричной и несимметричной нагрузки.
- •22. Мощность трехфазного тока. Выражение для активной, реактивной и полной мощности при несимметричной и симметричной нагрузках.
- •23. Закон электромагнитной индукции. Устройство и принцип действия однофазного трансформатора.
- •24. Режим холостого хода трансформатора.
- •2. Опыт хх трансформатора
- •25. Работа однофазного трансформатора под нагрузкой. Уравнение для комплексов токов и уравнения равновесия напряжений для первичной и вторичной цепей.
- •Упрощенная схема замещения Трансформатора
- •27. Внешние хар-ки трансформатора, потери мощности и к.П.Д. Примеры применения трансформаторов на путевых и подъемно-транспортных машинах.
- •28. Принцип действия и устройство сварочного трансформатора. Внешние хар-ки трансформатора.
- •2. Сварочный трансформатор
- •2. Устройство асинхронного двигателя
- •31.Работа асинхронного двигателя под нагрузкой. Зависимости частоты, эдс и индуктивного сопротивления ротора от скольжения.
- •33.Энергетическая диаграмма и кпд асинхронного двигателя.
- •2. Энергетическая диаграмма ад
- •35.Вывод зависимости для электромагнитного вращающего момента ад. Анализ хар-к м(s) и n(м).
- •36.Рабочие хар-ки асинхронного двигателя, их анализ.
- •37.Способы пуска асинхронного двигателя с короткозамкнутым ротором.
- •1.Пуск асинхронного двигателя
- •38.Реверсирование асинхронного двигателя. Его сущность и принципиальная схема.
- •39.Способы регулирования частоты вращения асинхронного двигателя.
- •40.Торможение асинхронного двигателя. Анализ способа с помощью механических хар-к.
- •2. Торможение ад
- •41.Устройство и принцип действия 3-х фазного синхронного генератора. Холостой ход генератора.
- •2. Холостой Ход сг
- •42. Работа синхронного генератора под нагрузкой
- •43. Устройство машин постоянного тока.
- •44. Принцип действия генератора постоянного тока
- •Характеристика холостого хода синхронного генератора
- •47. Способы пуска электродвигателей постоянного тока. Пусковая диаграмма при реостатном пуске.
- •49.Реверсирование электродвигателей постоянного тока.
- •50. Способы торможения электродвигателя постоянного тока, анализ с помощью механических хар-к. Недостатки и достоинства..
- •51. Полупроводниковые приборы. Диоды.
- •Типы диодов[править | править исходный текст]
- •52. Транзисторы и тиристоры. Основные параметры.
- •Классификация транзисторов[править | править исходный текст]
- •По основному полупроводниковому материалу[править | править исходный текст]
- •По структуре[править | править исходный текст]
- •Устройство и основные виды тиристоров[править | править исходный текст]
- •53. Полупроводниковые выпрямители.
- •54 Однополупериодная система выпрямления однофазного тока.
- •55. Двухполупериодная мостовая система выпрямления однофазного тока.
- •56. Мостовая схема выпрямления трехфазного тока.
- •57. Понятие о сглаживающих фильтрах.
- •58. Определение и классификация Электропривода (эп).
- •59. Режимы работы эд
- •60. Расчет мощности эд в системе эп
- •61. Аппаратура управления Электроприводом
- •62. Пуск ад с кз ротором
Ответы ЕБАНЫЕ
1. Преимущества электрической энергии. Закон электромагнитной индукции.
Преимущества ЭЭ:
1. ЭЭ легко преобразуется в другие виды энергии (световую, механическую, тепловую, звуковую).
2. Электрические машины и аппараты имеют высокий КПД (мощные трансформаторы имеют КПД близкий к 1).
3. ЭЭ легко передается на значительные расстояния при относительно малых потерях.
4. ЭЭ легко распределяется между различными по характеру потребителями в любых количествах от долей Ватта до десятков тысяч киловатт в одном агрегате.
5. Обеспечивается простота управления и автоматизации источников и потребителей ЭЭ.
Применение ЭЭ повысило надежность работы оборудования.
Электротехника – это наука о получении, распределении и преобразовании ЭЭ.
В нашем курсе будут изучаться те разделы электротехники, которые непосредственно связаны с общеинженерной подготовкой специалистов, а также электрооборудованием строительных объектов.
1. Закон электромагнитной индукции
Открыт Фарадеем в 1831 году.
Фарадей опытным путем установил, что в проводнике, движущемся в магнитном поле индуктируется ЭДС.
Помимо величины ЭДС имеет направление, определяемое по правилу правой руки.
Рассмотрим рисунок: между полюсами магнита движется проводник со скоростью V.
Пусть вверху – северный магнитный полюс, обозначается буквой N,
Силовые линии выходят из северного полюса.
|
е – ЭДС, В; В – магнитная индукция, Тл; l – длина проводника, м; V – скорость движения проводника, м/с.
|
Знак «минус» в этой формуле выражает собой принцип ЛЕНЦА, согласно которому индуктируемая ЭДС стремится противодействовать причине, ее вызывающей.
Это можно пояснить следующим образом:
Если проводник замкнуть на какое-либо сопротивление, то под действием ЭДС по проводнику будет протекать ток, совпадающий по направлению с ЭДС.
Взаимодействие этого тока с Магнитным Полем приводит к появлению Электромагнитной силы, направленной против движения проводника. Направление этой силы определяется по правилу левой руки.
Для силы справедлива следующая зависимость
Закону ЭМИ можно придать более общий вид, если выразить скорость проводника через путь dX, проходимый проводником за время dt.
|
|
Отсюда получим вторую форму записи закона ЭМИ
|
|
Правую часть этой формулы можно трактовать как изменение во времени сцепленного с контуром Магнитного Потока. Это позволяет распространить закон ЭМИ на переменный ток.
В реальных
электротехнических устройствах МП
создается с помощью катушек, имеющих
число витков W. Вводится
понятие ПОТОКОСЦЕПЛЕНИЕ –
|
|
Если весь МП пронизывает все витки катушки, то имеет мести полное потокосцепление, при этом
В этом случае закон ЭМИ можно записать в следующей форме:
|
|