
- •Вопрос 1
- •2 Вопрос
- •[Править]Природа
- •[Править]История
- •[Править]Свойства
- •[Править]в воде [править]Механизм Гротгуса
- •[Править]Водные кластеры
- •[Править]в нуклеиновых кислотах и белках
- •Ковалентная связь.
- •Химическая связь. Основные характеристики химической связи
- •Ковалентная связь
- •Полярная и неполярная ковалентная связь
- •Водородная связь
- •3 Вопрос
- •Основы методов валентных связей (вс) и молекулярных орбиталей (мо)
- •4 Вопрос
- •[Править]Проявления периодического закона в отношении энергии ионизации
- •[Править]Проявления периодического закона в отношении энергии сродства к электрону
- •[Править]Проявления периодического закона в отношении электроотрицательности
- •[Править]Проявления периодического закона в отношении атомных и ионных радиусов
- •[Править]Проявления периодического закона в отношении энергии атомизации
- •[Править]Проявления периодического закона в отношении степени окисления
- •[Править]Проявления периодического закона в отношении окислительного потенциала
- •[Править]Внутренняя и вторичная периодичность [править]s- и р-элементы
- •[Править]d-Элементы
- •5 Вопрос
- •Общие свойства растворов Качественный и количественный состав растворов
- •Массовая доля и молярная концентрация растворённого вещества
- •Теоретическая часть
- •6 Вопрос
- •[Править]Основные термины
- •[Править]Классификация
- •[Править]По заряду комплекса
- •[Править]По числу мест занимаемых лигандами в координационной сфере
- •[Править]По природе лиганда
- •[Править]Номенклатура
- •[Править]История
- •[Править]Структура и стереохимия
- •[Править]Изомерия координационных соединений
- •[Править]Пространственная (геометрическая) изомерия
- •[Править]Оптическая изомерия
- •[Править]Электронные свойства [править]Окраска
- •[Править]Магнитные свойства
- •[Править]Применение
- •1. 1. Основные понятия координационной теории вернера
- •1. 2. Определение заряда основных частиц комплексного соединения
- •1. 3. Номенклатура комплексных соединений
- •Координационная теория Вернера
- •8 Вопрос
- •[Править]Скорость химической реакции
- •[Править]Порядок химической реакции
- •[Править]Реакция нулевого порядка
- •[Править]Реакция первого порядка
- •[Править]Реакция второго порядка
- •[Править]Молекулярность реакции
- •[Править]Катализ
- •§ 1.4. Скорость химической реакции. Кинетическое уравнение и константа скорости. Закон действующих масс.
- •10 Вопрос
- •5.3. Порядок химических реакций
- •2.1.5 Методы определения порядка реакции
- •2.1.6 Молекулярность элементарных реакций
- •11 Вопрос
- •Зависимость константы равновесия от температуры
- •[Править]Константа равновесия и константа скорости реакции
- •[Править]Методы расчета константы равновесия
- •[Править]Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции
- •12 Вопрос
- •# Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.
- •# Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.
- •[Править]Определение
- •[Править]Связь с термодинамической устойчивостью системы
- •[Править]Применение в химии [править]Связь с химическим потенциалом
- •[Править]Энергия Гиббса и направление протекания реакции
- •[Править]Историческая справка
- •Основные типы гибридизации атомных орбиталей комплексообразователей и соответствующие им геометрические формы комплексов
- •Природа химической связи в комплексных соединениях. Вторичная диссоциация комплексов. Константа нестойкости
- •[Править]Основные принципы катализа
- •[Править]Типы катализа
- •[Править]Гомогенный катализ
- •[Править]Гетерогенный катализ
- •[Править]Носитель катализатора
- •[Править]Химия катализа
- •Растворы неэлектролитов
- •[Править]Отклонения от закона Рауля
- •[Править]Второй закон Рауля
- •[Править]Понижение температуры кристаллизации растворов
- •[Править]Повышение температуры кипения растворов
- •[Править]Криоскопическая и эбулиоскопическая константы
- •[Править]Растворы электролитов
- •Законы Рауля
- •[Править]Выбор стандартного состояния
- •[Править]Методы определения активности
- •[Править]По равновесному давлению пара
- •[Править]По повышению температуры кипения раствора
- •[Править]По понижению температуры замерзания раствора
- •[Править]По осмотическому давлению раствора
- •[Править]Пример
- •[Править]Методы определения
- •[Править]Мнимая степень диссоциации
- •[Править]История
- •[Править]Уравнения, связывающие pH и pOh [править]Вывод значения pH
- •[Править]pOh
- •[Править]Значения pH в растворах различной кислотности
- •[Править]Методы определения значения pH
- •[Править]Роль pH в химии и биологии
- •Формы применения индикаторов
- •[Править]Кислотно-основные индикаторы (водные растворы) [править]Интервалы перехода цвета индикаторов
- •26 Вопрос
- •[Править]История становления понятия
- •[Править]Модели атомов
- •[Править]Квантово-механическая модель атома
- •[Править]Строение [править]Субатомные частицы
- •[Править]Электроны в атоме
- •[Править]Свойства
- •[Править]Масса
- •[Править]Размер
- •[Править]Радиоактивный распад
- •[Править]Магнитный момент
- •[Править]Энергетические уровни
- •[Править]Валентность
- •[Править]Гидролиз солей
- •[Править]Степень гидролиза
- •[Править]Константа гидролиза
- •[Править]Гидролиз органических веществ
- •[Править]Измерение потенциалов
- •Решение типовых задач по теме “основы электрохимии” (для нехимических специальностей)
- •[Править]Первый закон Фарадея
- •[Править]Вывод закона Фарадея
- •[Править]Второй закон Фарадея
- •[Править]Изменение электролизом веществ
- •[Править]Примеры [править]Расплавы
- •[Править]Растворы
- •[Править]Мнемоническое правило
- •[Править]Описание
- •[Править]Окисление
- •[Править]Восстановление
- •[Править]Виды окислительно-восстановительных реакций
- •[Править]Примеры [править]Окислительно-восстановительная реакция между водородом и фтором
- •[Править]Окисление, восстановление
- •[Править]Мнемонические правила
- •[Править]История
- •[Править]Основные положения
- •[Править]Вытекающие законы и положения
- •Стехиометрические законы
- •1.1.1 Количество вещества - моль вещества
- •1.1.2 Эквивалентная масса (молярная масса эквивалента вещества)
- •Метод валентных связей
- •Обратимая окислительно-восстановительная система
- •[Править]Закон эквивалентов
- •[Править]Определение
- •[Править]Диссоциация электролитов с многовалентными ионами
- •[Править]Связь константы диссоциации и степени диссоциации
- •[Править]Отличие экспериментальных результатов от модели Аррениуса, вывод константы диссоциации через активности
- •[Править]Константа диссоциации сильных электролитов
- •[Править]Примеры расчётов [править]Диссоциация воды
- •[Править]Диссоциация слабой кислоты
- •[Править]Пример
- •[Править]Методы определения
- •[Править]Мнимая степень диссоциации
- •Кислотность и основность по Бренстеду-Лоури
[Править]Квантово-механическая модель атома
Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряданейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяетсяэлектрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).
Массу атома принято измерять в атомных единицах массы, равных 1⁄12 от массы атома стабильного изотопа углерода 12C.
[Править]Строение [править]Субатомные частицы
Основная статья: Субатомные частицы
Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11×10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами.[4] Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726×10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929×10−27 кг).[5] При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5×10−15 м, хотя размеры этих частиц определены плохо.[6]
В стандартной модели элементарных частиц как протоны, так и нейтроны состоят из элементарных частиц, называемых кварками. Наряду с лептонами, кварки являются одной из основных составляющих материи. И первые и вторые являются фермионами. Существует шесть типов кварков, каждый из которых имеет дробный электрический заряд, равный +2⁄3 или −1⁄3 элементарного. Протоны состоят из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Это различие объясняет разницу в массах и зарядах протона и нейтрона. Кварки связаны между собой сильными ядерными взаимодействиями, которые передаются глюонами.[7][8]
[Править]Электроны в атоме
Основная статья: Атомная орбиталь
При описании электронов в атоме в рамках квантовой механики, обычно рассматривают распределение вероятности в 3n-мерном пространстве для системы n электронов.
Электроны в атоме притягиваются к ядру, между электронами также действует кулоновское взаимодействие. Эти же силы удерживают электроны внутри потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо получить энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.
Электронам, как и другим частицам, свойственен корпускулярно-волновой дуализм. Иногда говорят, что электрон движется по орбитали, что неверно. Состояние электронов описывается волновой функцией, квадрат модуля которой характеризует плотность вероятности нахождения частиц в данной точке пространства в данный момент времени, или, в общем случае, оператором плотности. Существует дискретный набор атомных орбиталей, которым соответствуют стационарные чистые состояния электронов в атоме.
Каждой орбитали соответствует свой уровень энергии. Электрон может перейти на уровень с большей энергией, поглотив фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях (см.: постулаты Бора).