
- •Вступ. Зміст предмету «Матеріалознавство»
- •Основні властивості металевих і неметалевих матеріалів.
- •Тема 1.1. Будова металів, методи дослідження їх структури. Кристалічна будова металів
- •Дефекти кристалічної будови
- •Кристалізація металів
- •Поліморфні перетворення
- •Методи дослідження структури металів
- •Тема 1.2. Основні властивості конструкційних матеріалів Фізичні та хімічні властивості матеріалів
- •Механічні властивості матеріалів
- •Міцність і пластичність металу
- •Міцність неметалевих матеріалів
- •Твердість
- •Ударна в’язкість, витривалість та зносостійкість
- •2. Конструкційні метали і сплави.
- •Тема 2.1. Основні положення теорії сплавів. Сплави заліза з вуглецем. Основні поняття про сплави
- •Поняття про системи, фази, компоненти
- •Діаграма стану сплавів
- •Діаграма стану залізовуглецевих сплавів Компоненти і фази системи залізо – вуглець
- •Діаграма стану залізо - вуглець
- •Тема 2.2. Виробництво чавуну і сталі. Виробництво чавуну. Залізні руди, флюси, паливо та вогнетривкі матеріали
- •Доменне виробництво
- •Продукти доменного виробництва.
- •Виробництво сталі.
- •Конверторний спосіб виробництва сталі.
- •Виробництво сталі в електропечах
- •Позадоменне рафінування сталі
- •Розливання сталі
- •Тема 2.3 Вуглецеві сталі.
- •Вплив постійних домішок на властивості сталі
- •Класифікація вуглецевих сталей
- •Сталі вуглецеві конструкційні звичайної якості
- •Сталі конструкційні вуглецеві якісні
- •Сталі вуглецеві інструментальні
- •Тема 2.4 Чавуни.
- •Білі чавуни
- •Графітизація чавунів
- •Вплив домішок і швидкості охолодження на структуру та властивості чавунів
- •Сірі чавуни (з пластинчастим графітом)
- •Ковкі чавуни
- •Високоміцні чавуни (з кулястим графітом)
- •Тема 2.5 Основи термічної і хіміко-термічної обробки металів. Теорія термічної обробки сталі
- •Перетворення, що відбуваються у сталях під час нагрівання
- •Продукти розпаду аустеніту
- •Термічна обробка сталей Відпал сталей
- •Гартування сталі
- •Відпуск сталі
- •Хіміко-термічна обробка сталі
- •Цементація сталі
- •Дифузійна металізація
- •Тема 2.6 Леговані сталі.
- •Вплив легувальних елементів на властивості сталей
- •Класифікація та маркування легованих сталей
- •Конструкційні леговані сталі
- •Сталі та сплави з особливими властивостями.
- •Леговані чавуни
- •Тема 2.7 Інструментальні матеріали. Інструментальні вуглецеві сталі
- •Леговані інструментальні сталі
- •Швидкорізальні інструментальні сталі
- •Тверді металокерамічні сплави
- •Мінералокерамічні тверді сплави
- •Надтверді інструментальні матеріали
- •Тема 2.8 Сплави кольорових металів. Сплави міді. Склад, структура, властивості, маркування та використання латуней і бронз
- •Сплави алюмінію. Склад, структура, властивості, маркування та застосування силумінів, дуралюмінів, високоміцних і жаростійких сплавів
- •Антифрикційні сплави
- •Тема 2.9 Корозія металів і способи захисту від неї Поняття про корозію
- •Електрохімічна корозія
- •Хімічна корозія
- •Методи захисту від корозії
- •Металеві покриття
- •Хімічні покриття
- •Катодний захист
- •Неметалеві покриття
- •3. Основи обробки тиском та з’єднання конструкційних матеріалів.
- •Тема 3.1 Обробка тиском.
- •Суть обробки металів тиском
- •Прокатування (вальцювання) заготовок
- •Сортамент прокату (вальцівок)
- •Обладнання для прокатування заготовок
- •Процес волочіння
- •Вільне кування заготовок
- •Штампування заготовок
- •Листове штампування
- •Тема 3.2 Зварювання, паяння і розрізування матеріалів Ручне електродугове зварювання
- •Суть елетродугового зварювання
- •Електроди для ручного зварювання
- •Типи зварних з’єднань
- •Режим ручного дугового зварювання
- •Автоматизація зварювального виробництва
- •Напівавтоматичне та автоматичне дугове зварювання під флюсом
- •Особливості зварювання різних конструкційних матеріалів Зварювання вуглецевих і легованих сталей
- •Зварювання чавунів
- •Зварювання алюмінію
- •Зварювання пластмас
- •Контактне зварювання та зварювання тертям Контактне електричне зварювання
- •Зварювання тертям
- •Газове зварювання Гази, що застосовуються при зварюванні
- •Обладнання для газового зварювання
- •Газове різання металів
- •Дугове та променеве різання металів
- •Паяння металів і сплавів
- •Технологічний процес паяння
- •4. Неметалеві конструкційні матеріали
- •Тема 4.1. Пластичні маси.
- •Загальні відомості про пластмаси
- •Термопластичні пластмаси
- •Термореактивні пластмаси
- •Виготовлення виробів з полімерних матеріалів
- •Виготовлення виробів на основі рідких полімерів
- •Формування деталей з полімерів у в'язкорідкому стані
- •Тема 4.2. Композиційні матеріали.
- •Дисперснозміцнені мкм
- •Волоконні мкм
- •Пкм з порошкоподібним зміцнювачем
- •Волоконні пкм
- •Волоконні ккм
- •Тема 4.3. Скло та склокристалеві матеріали
- •Тема 4.4. Гумові матеріали
- •Тема 4.5. Деревні матеріали. Основні відомості про деревину
- •Властивості деревини
- •Породи деревини та їх застосування
- •Дефекти деревини
- •Способи захисту деревини
- •Основні види пиломатеріалів та виробів з деревини
- •Тема 4.6. Мінеральні в’яжучі речовини
- •Будівельне вапно
- •Гіпсові в’яжучі речовини
- •Магнезитові в’яжучі речовини
- •Рідке скло і кислотостійкий цемент
- •Портландцемент
- •Тема 4.7. Бетони і залізобетони Загальні відомості про бетони та їх класифікація
- •Матеріали для важкого бетону
- •Властивості бетонної суміші і бетону
- •Легкі бетони
- •Залізобетони
- •Бетонні і залізобетонні вироби
- •Тема 4.8. Будівельні розчини Види будівельних розчинів
- •Властивості будівельних розчинів
- •Розчини для кам’яної кладки
- •Облицювальні розчини
- •Спеціальні розчини
- •Тема 4.9. Керамічні та силікатні матеріали. Керамічні матеріали
- •Виробництво керамічних матеріалів та виробів
- •Керамічні вироби
- •Силікатні матеріали та вироби
- •Література
Ударна в’язкість, витривалість та зносостійкість
Основним видом випробувань металів при динамічних навантаженнях є випробування на ударний згин надрізаних зразків стандартизованого розміру. Ударною в'язкістю називають відношення роботи, яка витрачена на руйнування зразка до початкової площі його поперечного перерізу в місці руйнування. Зразок з надрізом встановлюють на маятниковому копрі і наносять удар маятником.
Більшість деталей машин і конструкцій, що працюють при циклічних навантаженнях, руйнуються після певної кількості циклів при напруженнях, нижчих за σТ. Це явище називають втомою. За характеристику міцності металу в таких умовах використовують межу витривалості σ-1 — найбільше напруження, при якому деталь не руйнується після певної кількості циклів навантаження, що називають базою. Для сталі вона становить 107 циклів, а для кольорових металів — 108. Дослідження проводять на випробувальних машинах, частіше з обертовим зразком.
На зносостійкість конструкційні матеріали випробовують на спеціальних барабанах, що обертаються.
Оскільки при стандартних випробуваннях важко повністю відтворити умови роботи деталі в конструкції чи машині, часто готові деталі додатково випробовують на стендах або в процесі експлуатації. Це хоч і дорого, проте дає змогу приймати обгрунтованіші рішення при виборі матеріалу і способі його зміцнення.
2. Конструкційні метали і сплави.
Тема 2.1. Основні положення теорії сплавів. Сплави заліза з вуглецем. Основні поняття про сплави
Чисті метали в більшості випадків не забезпечують необхідного комплексу механічних та технологічних властивостей і тому рідко використовуються для виготовлення деталей. В більшості випадків в техніці використовують сплави.
Сплавом називають речовину, яка складається з двох або більше компонентів.
Більшість сплавів отримують в рідкому стані, однак вони можуть бути одержані також шляхом спікання, електролізу, конденсації з пароподібного стану, тощо. В якості компонентів до складу металевих сплавів можуть входити і неметали (металоїди), але переважати мають метали.
Не всяка сполука компонентів дає сплав. Залізо та свинець, наприклад, в рідкому стані розділяються на два шари, і одержання сплаву цих компонентів стає неможливим.
Необхідною умовою для виготовлення сплавів с взаємна дифузія атомів компонентів. Ця умова найлегше задовольняється тоді, коли компоненти перебувають у рідкому стані і утворюють однорідні розчини на атомному рівні. Під час кристалізації залежно від фізико-хімічних властивостей компонентів їх атоми взаємодіють. Внаслідок такої взаємодії формуються структури у вигляді:
твердого розчину заміщення або проникнення;
хімічної сполуки;
механічної суміші з різнорідних кристалів тощо.
У твердому розчині заміщення атоми розчиненого компонента заміщують частину атомів компонента-розчинника в його кристалічній решітці. Кількість заміщених атомів може змінюватись у широкому діапазоні. Залежно від цього розрізняють тверді розчини з необмеженою і з обмеженою розчинністю. Для утворення таких розчинів необхідно вибрати компоненти, в яких:
– однаковий тип елементарної кристалічної гратки;
– різниця розмірів атомних радіусів не перевищує 8...15 %;
– близька будова валентних атомних рівнів компонентів.
У твердому розчині проникнення атоми розчиненого компонента можуть перебувати в міжатомних порожнинах просторової кристалічної гратки компонента розчинника.
Зважаючи на невеликі розміри порожнин кристалічної гратки металу-розчинника, можна стверджувати, що в них можуть перебувати лише атоми неметалів з малими розмірами (вуглець, водень, бор).
Тверді розчини проникнення бувають тільки обмеженими, концентрація розчиненого компонента в них практично не перевищує 2 %.
Хімічна сполука найчастіше утворюється з елементів, які істотно відрізняються за будовою і властивостями. Співвідношення кількості атомів елементів, що входять до складу сполуки, строго визначене й виражається певною формулою Елементарна кристалічна гратка хімічної сполуки відмінна від кристалічних граток компонентів, що її утворили. Хімічні елементи в ній займають строго визначені положення. Властивості хімічної сполуки істотно відрізняються від властивостей компонентів. Переважно хімічним сполукам властива низька пластичність і висока твердість, яка істотно перевищує твердість компонентів. На відміну від твердих розчинів, хімічні сполуки мають сталу температуру плавлення.
Механічна суміш складається із різнорідних кристалів. Така структура представляє собою дуже дрібну суміш кристалітів (зерен) компонентів. Механічні суміші утворюються у випадках, коли елементи мають обмежену розчинність і не утворюють хімічного з’єднання.