
- •Вопрос 1.Основные свойства массивов горных пород ,определяющих их буримость и взрываемость.
- •Вопрос 2.Основные компоненты промышленных вв Пвв- это смеси включающие следующие компоненты:
- •Вопрос 3. Расчет сосредоточенных зарядов при взрывании на выброс.
- •1. Классификация пород по сНиП
- •3. Расчет линейно распределённыйх зарядов при взрывании на выброс
- •1. Классификация массивов горных пород по трещиноватости (блочности)
- •2. Формы химического превращения вв, химические реакции при взрывах тротила и ас.
- •3. Расчет скваженных зарядов рыхления для условия уступной отбойки горных пород
- •(Второй вариант ответа)Билет 3 вопр 3.Расчет параметров скважинных зарядов рыхления
- •1. Типы зарядных выработок (шпуры, скважины, камеры и т.Д.)
- •2. Простейшие вв, приготовляемые на местах производства взрывных работ.
- •3. Короткозамедленное взрывание скважинных зарядов в условиях открытых горных работ.
- •1. Способы бурения шпуров и скважин
- •2. Порошкообразные вв (типы, свойства и область применения)
- •3. Расчет шпуровых зарядов при проходке подземных выработок торцевым забоем.
- •1. Определение производительности буровых станков.
- •2. Предохранительные вв (типы, свойства и область применения)
- •3. Расчёт параметров бвр при отбойке руды веерными скважинными зарядами в подземных условиях. Билет №7
- •2. Инициирующие взрывчатые вещества
- •3.Расчет врубов с компенсационными скважинами при проходке подземной выработке
- •Билет №8
- •2. Тротил
- •Билет №9
- •Термическое бурение,
- •Водосодержащие взрывчатые вещества
- •3 Вопрос. Расчет зарядов вв при контурном взрывании открытым способом
- •Билет №10
- •Билет №11
- •Крепость и буримость горных пород
- •Факторы влияющие на устойчивость и скорость детонации вв
- •Расчет интервалов замедления при квз в карьерах
- •12 Билет 1 вопрос
- •12 Билет 2 вопрос
- •Вопрос 1 Трещиноватость и взрываемость массивов горных пород
- •Разновидности трещин
- •Характеристики трещиноватости
- •Характеристики трещиноватости скальных массивов
- •Вопрос 1 Требования к качеству взрывов в условиях открытых горных работ
- •Вопрос 2 Температура взрыва и давление газообразных продуктов детонации промышленных вв
- •Вопрос 3 Сейсмическое действие взрыва.Расчет сейсмобезопасных расстояний
- •Вопрос 1 Требования к качеству взрывов в условиях подземных горных работ
- •Вопрос 2 Объем газов взрыва
- •17 Билет.
- •1 Вопрос. Классификация способов взрывных работ по типу зарядных выработок
- •2 Вопрос. Оценка чувствительности вв
- •Вопрос 3. Расчет скважинных зарядов рыхления в условиях уступной отбойки
- •Вопрос 3. Оперативная оценка «себестоимости» буровзрывных работ
- •20 Билет.
- •1 Вопрос. Классификация методов взрывных работ
- •2 Вопрос.
- •3 Вопрос.
- •21 Билет
- •1 Вопрос. Понятие о схемах короткозамедленного взрывания
- •2 Вопрос. Свойства промышленных вв, определяющие их работоспособность.
- •3 Вопрос. Поражающие факторы взрыва. Расчет размеров опасных зон в условиях подземных горных работ.
Расчет интервалов замедления при квз в карьерах
Под действием взрыва скважинного заряда скальные горные породы, которые относятся к хрупким средам, в основном своем объеме (до 75-80 %) разрушаются радиальными трещинами растяжения. Поскольку основные эффекты КЗВ базируются на образовании дополнительных свободных поверхностей, было рассмотрено поле скоростей роста трещин вблизи этой поверхности. Для установления зависимости скорости роста трещин разрыва от величины напряжения выполнен анализ напряженного состояния среды при приложении взрывных нагрузок на основе "зонной" модели разрушения.
В результате решения задачи осесимметричного нагружения упругого цилиндра внутренним давлением Р получены выражения для определения радиальной и тангенциальной составляющих поля напряжений при взрыве заряда в неограниченном массиве и вблизи боковой свободной поверхности.
Взрыв заряда в условиях неограниченного массива описывается формулой
,
(1)
Взрыв заряда вблизи боковой свободной поверхности описывается формулами:
,
(2)
,
(3)
(4)
,
(5)
(6)
где σr, σт - собственно радиальная и тангенциальная составляющие поля напряжений (МПа); Рс - давление в цилиндрической полости при максимальном ее расширении (МПа); Rп - радиус взрывной полости в конечной стадии ее расширения (м); r - текущее расстояние (м); r1 - расстояние по нормали от центра отверстия до грани полуплоскости (м); β - угол между нормалью к грани полуплоскости и направлением на точку, где определяется напряжение; R0 - радиус заряда (м); ρВВ - плотность ВВ (кг/м3); D - скорость детонации ВВ (м/с); σсж - допустимое напряжение при одноосном сжатии; ρ0 - плотность вытесненной породы (кг/м3); С - скорость звука в породе (м/с).
Vr. м/с
800
700
560
500
3
2
1
300
200
5
10
15
20
r
400
Рис. 1. Зависимость скорости роста трещин растяжения от приведенного расстояния:
1 - по линии, параллельной свободной поверхности; 2 - по образующей призмы выброса;
3 - по нормали к свободной поверхности
Расчеты на ЭВМ характера распределения поля напряжений при взрывном нагружении показали, что напряжения от взрыва удлиненного заряда в пределах воронки выброса распределяются асимметрично при наличии свободной поверхности. Значения напряжений на кромке уступа по нормали от заряда значительно выше, чем параллельно свободной поверхности. Например, на расстоянии от центра взрыва, равном тринадцати диаметрам заряда, растягивающие напряжения по нормали к свободной поверхности в 1,5 раза превышают напряжения по образующей призмы выброса и в 2,1 раза - по линии, параллельной свободной поверхности. Кроме того, сопротивляемость массива разрушению в сторону свободной поверхности ниже, чем в сторону массива. Следовательно, скорости трещинообразования в сторону свободной поверхности должны быть выше, чем в сторону массива и вдоль нее. С целью проверки данного предположения был проведен расчет поля скоростей трещинообразования вблизи свободной поверхности при взрыве скважинного заряда ВВ. Расчет выполнен по формулам для скорости развития трещин растяжения при нестационарных нагрузках. Анализ полученных зависимостей скорости роста трещины растяжения от приведенного расстояния при взрыве заряда вблизи свободной поверхности (рис. 1) показывает, что наибольшие значения отмечены в направлении по нормали к боковой свободной поверхности, наименьшие значения - по линии, параллельной свободной поверхности.