
- •Вопрос 1.Основные свойства массивов горных пород ,определяющих их буримость и взрываемость.
- •Вопрос 2.Основные компоненты промышленных вв Пвв- это смеси включающие следующие компоненты:
- •Вопрос 3. Расчет сосредоточенных зарядов при взрывании на выброс.
- •1. Классификация пород по сНиП
- •3. Расчет линейно распределённыйх зарядов при взрывании на выброс
- •1. Классификация массивов горных пород по трещиноватости (блочности)
- •2. Формы химического превращения вв, химические реакции при взрывах тротила и ас.
- •3. Расчет скваженных зарядов рыхления для условия уступной отбойки горных пород
- •(Второй вариант ответа)Билет 3 вопр 3.Расчет параметров скважинных зарядов рыхления
- •1. Типы зарядных выработок (шпуры, скважины, камеры и т.Д.)
- •2. Простейшие вв, приготовляемые на местах производства взрывных работ.
- •3. Короткозамедленное взрывание скважинных зарядов в условиях открытых горных работ.
- •1. Способы бурения шпуров и скважин
- •2. Порошкообразные вв (типы, свойства и область применения)
- •3. Расчет шпуровых зарядов при проходке подземных выработок торцевым забоем.
- •1. Определение производительности буровых станков.
- •2. Предохранительные вв (типы, свойства и область применения)
- •3. Расчёт параметров бвр при отбойке руды веерными скважинными зарядами в подземных условиях. Билет №7
- •2. Инициирующие взрывчатые вещества
- •3.Расчет врубов с компенсационными скважинами при проходке подземной выработке
- •Билет №8
- •2. Тротил
- •Билет №9
- •Термическое бурение,
- •Водосодержащие взрывчатые вещества
- •3 Вопрос. Расчет зарядов вв при контурном взрывании открытым способом
- •Билет №10
- •Билет №11
- •Крепость и буримость горных пород
- •Факторы влияющие на устойчивость и скорость детонации вв
- •Расчет интервалов замедления при квз в карьерах
- •12 Билет 1 вопрос
- •12 Билет 2 вопрос
- •Вопрос 1 Трещиноватость и взрываемость массивов горных пород
- •Разновидности трещин
- •Характеристики трещиноватости
- •Характеристики трещиноватости скальных массивов
- •Вопрос 1 Требования к качеству взрывов в условиях открытых горных работ
- •Вопрос 2 Температура взрыва и давление газообразных продуктов детонации промышленных вв
- •Вопрос 3 Сейсмическое действие взрыва.Расчет сейсмобезопасных расстояний
- •Вопрос 1 Требования к качеству взрывов в условиях подземных горных работ
- •Вопрос 2 Объем газов взрыва
- •17 Билет.
- •1 Вопрос. Классификация способов взрывных работ по типу зарядных выработок
- •2 Вопрос. Оценка чувствительности вв
- •Вопрос 3. Расчет скважинных зарядов рыхления в условиях уступной отбойки
- •Вопрос 3. Оперативная оценка «себестоимости» буровзрывных работ
- •20 Билет.
- •1 Вопрос. Классификация методов взрывных работ
- •2 Вопрос.
- •3 Вопрос.
- •21 Билет
- •1 Вопрос. Понятие о схемах короткозамедленного взрывания
- •2 Вопрос. Свойства промышленных вв, определяющие их работоспособность.
- •3 Вопрос. Поражающие факторы взрыва. Расчет размеров опасных зон в условиях подземных горных работ.
Билет №11
Крепость и буримость горных пород
Крепостью горной породы принято характеризовать ее сопротивляемость разрушению проф. М. М. Протодьяконов в 1926 г. предложил классификацию всех горных пород по их крепости.
В основу этой классификации положена мысль о том, что сопротивляемость горной породы любым видам разрушения (бурению различными способами, взрыванию и т.п.).
Крепость горной породы есть комплексная характеристика породы, определяемая целым рядом ее физико-механических свойств, оказывающих влияние на процесс ее разрушения при бурении. Крепость горной породы есть величина постоянная, не зависящая от способа бурения.
Ориентировочно коэффициент крепости I может быть принят равным 0,01 от предела прочности горной породы при одноосном сжатии (I = 0,01 осж).
Буримость породы — это величина углубки скважины за единицу времени чистого бурения (механическая скорость бурения). Она оценивается в м/ч, см/мин, мм/мин.
Буримость пород устанавливается опытным путем для определенных горных пород и породоразрушающих инструментов при рациональных режимах бурений. Так как при различных способах бурения механизм разрушения горных пород различен, то и буримость одной и той же породы при различных способах бурения будет различной. Буримость породы характеризуется следующими показателями: механической скоростью бурения, величиной проходки до допустимого износа породоразрушающего инструмента, затратой времени на проходку 1 м скважины. Эти величины зависят не только от свойств породы, но и от вида и конструкции породоразрушающего инструмента и параметров режима бурения. По мере усовершенствования породоразрушающих инструментов и технологических параметров «буримость» пород повышается.
В настоящее время существует большое количество шкал буримости пород различными породоразрушающими инструментами и различными способами. Эти шкалы не увязаны друг с другом.
Горные породы по буримости для вращательного колонкового бурения разделены на двенадцать категорий х. Критерием отнесения породы к той или иной категории буримости является углубка скважины за 1 ч чистого бурения при определенных условиях (тип и диаметр буровой коронки, глубина скважины и т. д.). При отклонениях от установленных (стандартных) условий вводятся поправочные коэффициенты.
Факторы влияющие на устойчивость и скорость детонации вв
Скорость детонации заряда ВВ зависит от характеристики самого ВВ (тип ВВ, его дисперсность, плотность ВВ в заряде), диаметра заряда и условий взрывания (наружный или внутренний заряд в шнуре или скважине, наличие забойки).
Диаметр и оболочка заряда. Для каждого ВВ можно найти два нехарактерных диаметра заряда: критический диаметр, при дальнейшем уменьшении которого детонация заряда ВВ становится неустойчивой, т.е. может происходить затухание детонации. С увеличением диаметра заряда больше критического скорость детонации увеличивается до определенного значения диаметра, называемого предельным, при дальнейшем увеличении которого скорость детонации заряда ВВ не увеличивается.
Высокое давление на фронте волны детонации вызывает интенсивное расширение продуктов детонации в стороны. Возникающие при этом волны разрежения будут распространяться в зону химической реакции и снижать давление и температуру продуктов взрыва, а следовательно, снижать скорость детонации за счет снижения величины энергии подпитки фронта волны детонации. Характер протекания этого процесса зависит от соотношения ширины зоны химической реакции и диаметра заряда. Любое химическое соединение или смесь способна детонировать, если реакция их разложения экзотермична, а выделение энергии реакции во фронт детонационной волны достаточно для обеспечения распространения по веществу детонационной волны с постоянными параметрами.
Таким образом, у грубодисперсных ВВ с широкой зоной химической реакции критический диаметр больше, чем у порошкообразных.
Если заряд окружен оболочкой, затрудняющей разлет продуктов взрыва, критический диаметр заряда уменьшается в 1,5-2,5 раза и больше. Например, для аммиачной селитры (порошкообразной) при взрыве в стеклянной трубке критический диаметр значительно больше, чем в стальной трубе.
Оболочка не оказывает заметного влияния на скорость детонации зарядов из однокомпонентных ВВ большой плотности; и, наоборот, сильно влияет на скорость детонации зарядов средней плотности, а также смесевых ВВ. На скорость детонации влияют главным образом инерционные свойства оболочки и ее сжимаемость. При малых плотностях заряжания на устойчивость детонации оказывает влияние и прочность оболочки. Оболочка позволяет снизить величину критического диаметра, т.е. достигнуть устойчивой детонации при меньших диаметрах. При больших диаметрах (близких к предельным) скорости детонации открытых зарядов и зарядов в оболочках примерно одинаковы.
При применении ВВ в зарядах небольшого диаметра, необходимо обеспечивать тщательное заполнение шпура взрывчатым веществом, чтобы последний выполнял роль оболочки, а также выполнять качественную забойку заряда. При зарядах большого диаметра эти факторы мало влияют на устойчивость детонации.
Изменение скорости детонации в зависимости от диаметра заряда определяется механизмом взрывного превращения в детонационной волне. Различают два характерных режима взрывного превращения. Первый развивается в виде теплового взрыва за фронтом ударной волны. При этом время подготовки ВВ к реакции намного больше, чем время самой реакции. Этот механизм требует сильного сжатия и разогрева слоя ВВ за счет действия ударной волны большого давления. При таком механизме вследствие быстрого протекания химической реакции газы взрыва не успевают расшириться, а потому как только диаметр заряда становится больше критического, его скорость детонации будет близка к предельной. Такой режим характерен для однокомпонентных жидких ВВ или тех ВВ, плотность которых близка к предельной. Второй режим развивается в виде воспламенения частиц ВВ в «горячих» точках, получаемых за счет адиабатического сжатия и разогрева воздушных включений или схлопывания пор. Реакция в форме взрывного горения распространяется по поверхности, а затем в глубь частиц ВВ.