
- •Конспект лекций
- •Введение
- •Раздел I
- •Глава 1
- •1.2. Элементы систем автоматического регулирования
- •1.2.1. Чувствительные элементы и датчики
- •1.2.2. Усилители
- •1.2.3. Электромагнитные реле
- •1.3. Объекты регулирования
- •1.3.1. Дифференциальное уравнение динамики объекта
- •1.3.2. Решение дифференциального уравнения
- •1.4. Автоматические регуляторы
- •1.4.1. Взаимодействие объекта и регулятора
- •X(t) — регулирующее воздействие; g(t) — управляющее воздействие
- •1.4.2. Выбор типа и настройки регулятора
- •Вопросы для самоконтроля:
- •Глава 2 передаточные функции и частотные характеристики
- •2.1. Передаточная функция
- •2.2. Частотная характеристика
- •2.3. Типовые динамические звенья
- •2.4. Соединение звеньев, алгебра передаточных функций
- •2.5. Уравнение динамики замкнутой системы
- •Глава 3
- •3.2. Критерий устойчивости Гурвица
- •3.3. Критерий устойчивости Михайлова
- •3.4. Качество регулирования
- •Раздел II
- •Глава 4
- •4.2. Задачи автоматизации котельной установки
- •4.3. Регулирование уровня воды в барабане котла
- •4.3.1. Одноимпульсная сар уровня воды с термогидравлическим регулятором
- •4.3.2. Одноимпульсная сар уровня воды с изодромным регулятором типа «Аскания»
- •4.3.3. Многоимпульсные регуляторы уровня воды
- •4.3.4. Регулирование производительности котельно-питательного насоса
- •4.4. Регулирование температуры перегретого пара
- •4.4.1. Регулирование температуры впрыском конденсата
- •4.4.2. Регулирование температуры в поверхностных пароохладителях
- •4.5. Регулирование горения
- •4.5.1. Схема регулирования горения с параллельным включением контуров
- •Осушение
- •4.5.2. Схема регулирования горения с последовательным включением контуров
- •4.6. Системы защиты и сигнализации котлов
- •4.7. Регулирование вспомогательных и утилизационных котлов
- •Вопросы для самоконтроля:
- •Глава 5 автоматизация паротурбинных установок
- •5.1. Регулируемые величины пту
- •5.2. Регулирование частоты вращения вала
- •5.3. Регулирование давления пара в уплотнениях
- •5.4. Регулирование давления в системе отбора пара
- •5.5. Регулирование температуры масла в системе смазки
- •5.6. Системы защиты паротурбинной установки
- •Вопросы для самоконтроля:
- •Глава 6 автоматизация газотурбинных установок
- •6.1. Основные характеристики гту
- •6.2. Регулирование частоты вращения ротора
- •6.3. Регулирование температуры газа
- •6.4. Системы защиты газотурбинной установки
- •Вопросы для самоконтроля:
- •Глава 7 автоматизация судовых дизельных установок
- •7.1. Общие вопросы автоматизации
- •7.2. Регулирование частоты вращения
- •7.2.1. Классификация регуляторов частоты вращения
- •1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
- •7.2.2. Схемы регуляторов частоты вращения
- •7.2.3. Регулирование частоты вращения параллельно работающих дизелей
- •7.3. Регулирование температуры охлаждающей среды
- •7.3.1. Регуляторы температуры
- •Перепуск
- •7.3.2. Динамика сар температуры
- •7.4. Регулирование температуры наддувочного воздуха
- •7.5. Регулирование вязкости тяжелого топлива
- •7.6. Системы сигнализации и защиты
- •Параметры, подлежащие индикации, сигнализации и защите, для автоматизированных дизельных судов
- •7.7. Системы дистанционного автоматизированного управления
- •7.8. Системы централизованного контроля (сцк)
- •7.9. Перспективы развития автоматизации
- •Вопросы для самоконтроля:
- •Глава 8 автоматизация вспомогательных механизмов и систем
- •8.1. Автоматизация механизмов, обслуживающих энергетическую установку
- •8.1.1. Конденсатная система
- •8.1.2. Конденсационная установка
- •8.1.3. Система подготовки топлива
- •8.1.4. Система сжатого воздуха
- •8.2. Автоматизация холодильных установок провизионных камер
- •8.2.1. Регулирование температуры в холодильных камерах
- •8.2.2. Регулирование холодопроизводительности компрессоров
- •8.2.3. Регулирование заполнения испарителя жидким хладагентом
- •8.2.4. Регулирование давления конденсации
- •8.2.5. Автоматическое удаление воздуха из системы
- •8.2.6. Регулирование уровня масла в маслоотделителе
- •8.2.7. Удаление инея с охлаждающих батарей
- •8.3. Автоматизация установок кондиционирования воздуха
- •8.4. Автоматизация противопожарных систем
- •8.4.1. Противопожарная сигнализация
- •8.4.2. Система пожаротушения
- •8.5. Автоматизация балластно-осушительных систем
- •8.6. Вопросы охраны труда
- •Вопросы для самоконтроля:
- •Литература
- •Оглавление
- •98309 Г. Керчь, Орджоникидзе, 82.
1.4.1. Взаимодействие объекта и регулятора
Рассмотрим, как будут изменяться основные показатели переходного процесса в случае совместной работы объекта, обладающего положительным самовыражением, с различными типами регуляторов. Как следует из функциональной схемы, приведенной на рис. 23, к объекту приложено два воздействия: внешнее возмущение z(t) и регулирующее воздействие со стороны регулятора x(t).
Объект и статический регулятор (П-регулятор). Динамика САР может быть описана следующими уравнениями:
(33)
Здесь kx и kz — коэффициенты усиления по рейке топливных насосов и нагрузке соответственyо; k1 и k2 — коэффициенты усиления регулятора.
Рис. 23. Функциональная схема САР:
у — регулируемая величина; z(t) — внешнее возмущение;
X(t) — регулирующее воздействие; g(t) — управляющее воздействие
Решая приведенную систему уравнений совместно, получим уравнение динамики САР:
.
(34)
Из полученного уравнения следует, что постоянная времени, а, следовательно, и продолжительность переходного процесса, а также коэффициент усиления, а, следовательно, и ошибка регулирования с введением П-регулятора уменьшились по сравнению с таковыми у двигателей без регулятора.
Объект и астатический регулятор (И-регулятор). Динамика САР в этом случае может быть описана следующими уравнениями:
(35)
Решая приведенную систему уравнений совместно, получим:
.
(36)
Так как на вход системы подается ступенчатое возмущение z = zc = const, то рz = 0, а, следовательно, и k2pz = 0 (производная от постоянной величины). Левая часть уравнения стала дифференциальным уравнением 2-го порядка, а правая стала равной нулю. Следовательно, переходный процесс может быть колебательным либо апериодическим, но с нулевой ошибкой регулирования.
Объект и изодромный регулятор (ПИ-регулятор). Динамика САР может быть представлена следующей системой уравнений:
(37)
решая систему совместно, получим:
.
(38)
Рис. 24. Переходные процессы в САР:
1 — без регулятора; 2 — с П-регулятором;
3 — с И-регулятором; 4 — с ПИ-регулятором
Как и в предыдущем случае, так как z = zc =const, pz = 0, т.е. ошибка регулирования будет отсутствовать, а переходный процесс может иметь колебательный характер.
Результаты проведенных исследований показаны на рис. 24
1.4.2. Выбор типа и настройки регулятора
Как уже указывалось ранее, САР является динамической системой, статические и динамические характеристики которой (зависимость выходной величины от входной в статике и динамике) определяются характеристиками объекта регулирования и регулятора, а также типом возмущений.
Поэтому при выборе типа регулятора должны учитываться основные характеристики объекта, а также требования, предъявляемые к техническим показателям регулирования (продолжительность переходного процесса, колебательность, статическая и динамическая ошибки).
Так, объекты с большим коэффициентом самовыравнивания могут оборудоваться любым типом регулятора, и если нет особых требований к показателям переходного процесса, то для автоматического регулирования можно использовать простейшие П-регуляторы и И-регуляторы. При наличии больших запаздываний и в то же время медленно изменяющихся возмущениях обычно применяют ПИ-регуляторы, а при резких и частых возмущениях — ПИД-регуляторы. Необходимо отметить, что правильный выбор типа регулятора является очень важной и в то же время достаточно сложной задачей. При настройке регулятора преследуются две цели: обеспечение устойчивой работы САР, под которой понимается способность системы возвращаться к равновесному состоянию после получения возмущений, а также получение требуемого техническими условиями качества регулирования. Параметрами настройки регуляторов являются коэффициенты усиления и, в зависимости от закона регулирования, различные постоянные времени.
Для сложных систем автоматического регулирования до настройки в натурных условиях часто выполняют исследования и настройку модели системы, которая набирается на моделирующих электронных установках.