
- •Конспект лекций
- •Введение
- •Раздел I
- •Глава 1
- •1.2. Элементы систем автоматического регулирования
- •1.2.1. Чувствительные элементы и датчики
- •1.2.2. Усилители
- •1.2.3. Электромагнитные реле
- •1.3. Объекты регулирования
- •1.3.1. Дифференциальное уравнение динамики объекта
- •1.3.2. Решение дифференциального уравнения
- •1.4. Автоматические регуляторы
- •1.4.1. Взаимодействие объекта и регулятора
- •X(t) — регулирующее воздействие; g(t) — управляющее воздействие
- •1.4.2. Выбор типа и настройки регулятора
- •Вопросы для самоконтроля:
- •Глава 2 передаточные функции и частотные характеристики
- •2.1. Передаточная функция
- •2.2. Частотная характеристика
- •2.3. Типовые динамические звенья
- •2.4. Соединение звеньев, алгебра передаточных функций
- •2.5. Уравнение динамики замкнутой системы
- •Глава 3
- •3.2. Критерий устойчивости Гурвица
- •3.3. Критерий устойчивости Михайлова
- •3.4. Качество регулирования
- •Раздел II
- •Глава 4
- •4.2. Задачи автоматизации котельной установки
- •4.3. Регулирование уровня воды в барабане котла
- •4.3.1. Одноимпульсная сар уровня воды с термогидравлическим регулятором
- •4.3.2. Одноимпульсная сар уровня воды с изодромным регулятором типа «Аскания»
- •4.3.3. Многоимпульсные регуляторы уровня воды
- •4.3.4. Регулирование производительности котельно-питательного насоса
- •4.4. Регулирование температуры перегретого пара
- •4.4.1. Регулирование температуры впрыском конденсата
- •4.4.2. Регулирование температуры в поверхностных пароохладителях
- •4.5. Регулирование горения
- •4.5.1. Схема регулирования горения с параллельным включением контуров
- •Осушение
- •4.5.2. Схема регулирования горения с последовательным включением контуров
- •4.6. Системы защиты и сигнализации котлов
- •4.7. Регулирование вспомогательных и утилизационных котлов
- •Вопросы для самоконтроля:
- •Глава 5 автоматизация паротурбинных установок
- •5.1. Регулируемые величины пту
- •5.2. Регулирование частоты вращения вала
- •5.3. Регулирование давления пара в уплотнениях
- •5.4. Регулирование давления в системе отбора пара
- •5.5. Регулирование температуры масла в системе смазки
- •5.6. Системы защиты паротурбинной установки
- •Вопросы для самоконтроля:
- •Глава 6 автоматизация газотурбинных установок
- •6.1. Основные характеристики гту
- •6.2. Регулирование частоты вращения ротора
- •6.3. Регулирование температуры газа
- •6.4. Системы защиты газотурбинной установки
- •Вопросы для самоконтроля:
- •Глава 7 автоматизация судовых дизельных установок
- •7.1. Общие вопросы автоматизации
- •7.2. Регулирование частоты вращения
- •7.2.1. Классификация регуляторов частоты вращения
- •1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
- •7.2.2. Схемы регуляторов частоты вращения
- •7.2.3. Регулирование частоты вращения параллельно работающих дизелей
- •7.3. Регулирование температуры охлаждающей среды
- •7.3.1. Регуляторы температуры
- •Перепуск
- •7.3.2. Динамика сар температуры
- •7.4. Регулирование температуры наддувочного воздуха
- •7.5. Регулирование вязкости тяжелого топлива
- •7.6. Системы сигнализации и защиты
- •Параметры, подлежащие индикации, сигнализации и защите, для автоматизированных дизельных судов
- •7.7. Системы дистанционного автоматизированного управления
- •7.8. Системы централизованного контроля (сцк)
- •7.9. Перспективы развития автоматизации
- •Вопросы для самоконтроля:
- •Глава 8 автоматизация вспомогательных механизмов и систем
- •8.1. Автоматизация механизмов, обслуживающих энергетическую установку
- •8.1.1. Конденсатная система
- •8.1.2. Конденсационная установка
- •8.1.3. Система подготовки топлива
- •8.1.4. Система сжатого воздуха
- •8.2. Автоматизация холодильных установок провизионных камер
- •8.2.1. Регулирование температуры в холодильных камерах
- •8.2.2. Регулирование холодопроизводительности компрессоров
- •8.2.3. Регулирование заполнения испарителя жидким хладагентом
- •8.2.4. Регулирование давления конденсации
- •8.2.5. Автоматическое удаление воздуха из системы
- •8.2.6. Регулирование уровня масла в маслоотделителе
- •8.2.7. Удаление инея с охлаждающих батарей
- •8.3. Автоматизация установок кондиционирования воздуха
- •8.4. Автоматизация противопожарных систем
- •8.4.1. Противопожарная сигнализация
- •8.4.2. Система пожаротушения
- •8.5. Автоматизация балластно-осушительных систем
- •8.6. Вопросы охраны труда
- •Вопросы для самоконтроля:
- •Литература
- •Оглавление
- •98309 Г. Керчь, Орджоникидзе, 82.
Перепуск
Рис. 102. Схема регулятора, температуры непрямого действия:
1 — регулирующий клапан; 2 — пружина сервомотора; 3 — мембрана сервомотора; 4 — кулачок-лекало жесткой обратной связи (ЖОС); 5 — толкатель ЖОС; 6 — пружина ЖОС; 7 — мембрана управляющего клапана (позиционера); 8 — управляющий клапан усилителя; 9 — дроссель; 10 — мембрана измерителя; 11 — рычаг измерителя; 12 — пружина измерителя; 13 — винт узла задания; 14 — пружина возврата; 15 — неподвижная опора рычага; 16 — гайка узла задания; 17 — шток чувствительного элемента (ЧЭ); 18 — сильфон ЧЭ; 19 — гильза ЧЭ;
20 — сопло измерителя
При повышении температуры среды повышается давление внутри гильзы 19, в результате чего шток чувствительного элемента (ЧЭ) 17 будет свободно перемещаться вверх до тех пор, пока не выберется зазор . При дальнейшем перемещении штока вверх он будет (через винт узла задания 13) перемещать также вверх гайку узла задания 16 и левый конец рычага измерителя 11, в результате чего уменьшатся деформация и усилие, развиваемое пружиной измерителя 12, мембрана 10 переместится вверх и увеличит проходное сечение для выхода воздуха через сопло измерителя 20. Давление воздуха в камере под мембраной 10, а также на мембрану 7 уменьшится, в результате чего клапан 8, управляющий отводом воздуха в атмосферу, переместится вправо и уменьшит давление воздуха в камере и верхней полости сервомотора В. Мембрана 3 и связанный с ней регулирующий клапан 1 переместятся вверх, при этом количество охлаждающей среды, поступающее на холодильник, увеличится, в результате чего температура ее понизится до заданной. Настройка регулятора на необходимый температурный режим осуществляется путем изменения зазора с помощью винта 13.
7.3.2. Динамика сар температуры
Система автоматического регулирования температуры включает в себя многоемкостный объект регулирования с распределенными параметрами. Это обстоятельство объясняется тем, что аккумулирование тепла может осуществляться в металле двигателя, пресной воде, заключенной в его зарубашечном пространстве, и металле корпуса водо-водяного холодильника, а также в трубках и забортной воде, прокачиваемой через холодильник. Температуры как пресной, так и забортной воды вследствие притока и отвода (потерь) тепла в различных местах тракта имеют неодинаковое значение, что приводит к распределенности параметров.
При выводе уравнений динамики САР обычно рассматривают упрощенную модель, считая параметры емкостей сосредоточенными.
Применительно к схеме, изображенной на рис. 98, математическое описание динамики системы будет состоять из следующих уравнений:
дифференциального уравнения 2-го порядка двигателя как теплового объекта регулирования;
дифференциального уравнения 2-го порядка водо-водяного холодильника;
алгебраического уравнения смесителя;
дифференциального уравнения 1-го порядка регулятора температуры.
При скачкообразном изменении нагрузки двигателя переходный процесс в САР температуры обычно имеет либо апериодический, либо малоколебательный характер. Продолжительность переходного процесса в зависимости от типа и размера двигателя может меняться в пределах 6—30 мин, при этом большие значения относятся к мощным малооборотным двигателям.