
- •Конспект лекций
- •Введение
- •Раздел I
- •Глава 1
- •1.2. Элементы систем автоматического регулирования
- •1.2.1. Чувствительные элементы и датчики
- •1.2.2. Усилители
- •1.2.3. Электромагнитные реле
- •1.3. Объекты регулирования
- •1.3.1. Дифференциальное уравнение динамики объекта
- •1.3.2. Решение дифференциального уравнения
- •1.4. Автоматические регуляторы
- •1.4.1. Взаимодействие объекта и регулятора
- •X(t) — регулирующее воздействие; g(t) — управляющее воздействие
- •1.4.2. Выбор типа и настройки регулятора
- •Вопросы для самоконтроля:
- •Глава 2 передаточные функции и частотные характеристики
- •2.1. Передаточная функция
- •2.2. Частотная характеристика
- •2.3. Типовые динамические звенья
- •2.4. Соединение звеньев, алгебра передаточных функций
- •2.5. Уравнение динамики замкнутой системы
- •Глава 3
- •3.2. Критерий устойчивости Гурвица
- •3.3. Критерий устойчивости Михайлова
- •3.4. Качество регулирования
- •Раздел II
- •Глава 4
- •4.2. Задачи автоматизации котельной установки
- •4.3. Регулирование уровня воды в барабане котла
- •4.3.1. Одноимпульсная сар уровня воды с термогидравлическим регулятором
- •4.3.2. Одноимпульсная сар уровня воды с изодромным регулятором типа «Аскания»
- •4.3.3. Многоимпульсные регуляторы уровня воды
- •4.3.4. Регулирование производительности котельно-питательного насоса
- •4.4. Регулирование температуры перегретого пара
- •4.4.1. Регулирование температуры впрыском конденсата
- •4.4.2. Регулирование температуры в поверхностных пароохладителях
- •4.5. Регулирование горения
- •4.5.1. Схема регулирования горения с параллельным включением контуров
- •Осушение
- •4.5.2. Схема регулирования горения с последовательным включением контуров
- •4.6. Системы защиты и сигнализации котлов
- •4.7. Регулирование вспомогательных и утилизационных котлов
- •Вопросы для самоконтроля:
- •Глава 5 автоматизация паротурбинных установок
- •5.1. Регулируемые величины пту
- •5.2. Регулирование частоты вращения вала
- •5.3. Регулирование давления пара в уплотнениях
- •5.4. Регулирование давления в системе отбора пара
- •5.5. Регулирование температуры масла в системе смазки
- •5.6. Системы защиты паротурбинной установки
- •Вопросы для самоконтроля:
- •Глава 6 автоматизация газотурбинных установок
- •6.1. Основные характеристики гту
- •6.2. Регулирование частоты вращения ротора
- •6.3. Регулирование температуры газа
- •6.4. Системы защиты газотурбинной установки
- •Вопросы для самоконтроля:
- •Глава 7 автоматизация судовых дизельных установок
- •7.1. Общие вопросы автоматизации
- •7.2. Регулирование частоты вращения
- •7.2.1. Классификация регуляторов частоты вращения
- •1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
- •7.2.2. Схемы регуляторов частоты вращения
- •7.2.3. Регулирование частоты вращения параллельно работающих дизелей
- •7.3. Регулирование температуры охлаждающей среды
- •7.3.1. Регуляторы температуры
- •Перепуск
- •7.3.2. Динамика сар температуры
- •7.4. Регулирование температуры наддувочного воздуха
- •7.5. Регулирование вязкости тяжелого топлива
- •7.6. Системы сигнализации и защиты
- •Параметры, подлежащие индикации, сигнализации и защите, для автоматизированных дизельных судов
- •7.7. Системы дистанционного автоматизированного управления
- •7.8. Системы централизованного контроля (сцк)
- •7.9. Перспективы развития автоматизации
- •Вопросы для самоконтроля:
- •Глава 8 автоматизация вспомогательных механизмов и систем
- •8.1. Автоматизация механизмов, обслуживающих энергетическую установку
- •8.1.1. Конденсатная система
- •8.1.2. Конденсационная установка
- •8.1.3. Система подготовки топлива
- •8.1.4. Система сжатого воздуха
- •8.2. Автоматизация холодильных установок провизионных камер
- •8.2.1. Регулирование температуры в холодильных камерах
- •8.2.2. Регулирование холодопроизводительности компрессоров
- •8.2.3. Регулирование заполнения испарителя жидким хладагентом
- •8.2.4. Регулирование давления конденсации
- •8.2.5. Автоматическое удаление воздуха из системы
- •8.2.6. Регулирование уровня масла в маслоотделителе
- •8.2.7. Удаление инея с охлаждающих батарей
- •8.3. Автоматизация установок кондиционирования воздуха
- •8.4. Автоматизация противопожарных систем
- •8.4.1. Противопожарная сигнализация
- •8.4.2. Система пожаротушения
- •8.5. Автоматизация балластно-осушительных систем
- •8.6. Вопросы охраны труда
- •Вопросы для самоконтроля:
- •Литература
- •Оглавление
- •98309 Г. Керчь, Орджоникидзе, 82.
1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
6 — регуляторные характеристики; 7 и 8 — частичные характеристики
При частоте вращения меньше предельной регулятор не воздействует на привод топливорегулирующих органов. Одна из возможных схем взаимодействия предельного регулятора с топливорегулирующими органами приведена на рис. 88.
Рис. 88. Схема взаимодействия предельного регулятора
с топливорегулирующими органами:
1 — рукоятка ручного управления топливоподачей; 2 — пружинная тяга;
3 — предельный регулятор; 4 — топливный насос
В последние годы все большее распространение стали получать всережимные регуляторы, которые предназначены для автоматического поддержания любого заданного скоростного режима — от минимально устойчивого до номинального. Характеристика двигателя, снабженного всережимным регулятором, приведена на рис. 89.
При всережимном регуляторе, включенном по всережимной схеме, управление топливоподачей при любых режимах работы осуществляется регулятором, выходной рычаг сервомотора которого без люфтов соединен с приводом топливорегулирующего органа топливных насосов. Режим работы двигателя задается с поста управления путем изменения затяжки пружины чувствительного элемента регулятора.
Из изложенного выше вытекает, что при наличии предельного регулятора цикловая подача топлива остается неизменной, а частота вращения вала двигателя при изменении внешней нагрузки будет изменяться в широком диапазоне (до максимально допустимых).
Рис. 89. Характеристика судового дизеля, снабженного всережимным
регулятором частоты вращения:
1 — внешняя характеристика; 2 — регуляторные характеристики
В этом случае тепловая нагрузка и связанные с ней температурные напряжения деталей цилиндро-поршневой группы остаются практически неизменными, а инерционные нагрузки в деталях движения будут достигать максимальных значений. В случае установки всережимного регулятора, включенного по всережимной схеме, при изменении внешней нагрузки будет изменяться цикловая подача топлива так, что частота вращения будет поддерживаться неизменной. В этом случае инерционные нагрузки, вызываемые изменением частоты вращения, не будут иметь места, но зато колебания тепловой нагрузки и связанные с ней температурные напряжения в деталях будут иметь максимальные значения.
Следовательно, как предельная, так и всережимная схема включения регулятора имеет свои отрицательные стороны.
В связи с этим в последние годы на дизелях с прямой передачей на винт находят применение всережимные регуляторы, включаемые по всережимно-предельной схеме (рис. 90).
Рис. 90. Всережимно-предельная схема включения регулятора
При такой схеме включения всережимный регулятор может работать как предельный и как всережимный.
Настройка регулятора 5 на необходимый скоростной режим осуществляется маховичком 1, при помощи которого через систему рычагов изменяется затяжка пружины чувствительного элемента. Маховичок 1 располагается на посту управления двигателем. Цикловая подача топлива устанавливается рычагом 2 в соответствии с требуемой нагрузкой независимо от регулирования скоростного режима. Изменение нагрузки дизеля приводит к изменению скоростного режима.
Рычаг 2 служит упором-ограничителем для указателя нагрузки 3, который при помощи шарнирного устройства связан с рычагом 4, воздействующим на регулирующий орган топливного насоса 6.
Такая связь устройства настройки 1 с рычагом 2 в зависимости от их взаимного расположения дает возможность обеспечить работу регулятора либо как всережимного, либо как предельного.
При наличии зазора х между рычагом 2 и указателем нагрузки 3 и отсутствии зазора у (у = 0) в серьге соединения рычага 4 с выходным рычагом регулятора регулятор работает как всережимный, а частота вращения вала дизеля определяется положением маховичка 1 настройки регулятора. При отсутствии зазора х и наличии зазора у регулятор работает как предельный, а частота вращения задается рукояткой 2.
Однорежимные регуляторы предназначаются для поддержания постоянного значения заданной частоты вращения при любых нагрузках. Такие регуляторы устанавливаются на вспомогательных двигателях (дизель-генераторы, дизель-компрессоры и др.) либо на главных двигателях при включении в качестве предельных регуляторов.
Двухрежимные регуляторы обеспечивают автоматическое поддержание частоты вращения вала дизеля на двух крайних режимах, соответствующих минимальной и максимальной нагрузкам (холостой ход и полная нагрузка). В промежутке между этими режимами управление двигателем осуществляется вручную с непосредственным воздействием оператора на топливорегулирующие органы. Такого типа регуляторы обычно предназначаются для двигателей небольших мощностей, работающих на винт через реверсивно-редукционные муфты.
Для улучшения динамических характеристик регуляторов (в основном устойчивости и продолжительности переходного процесса) вводятся дополнительные обратные связи. На рис. 91, а, б и в показаны схемы регуляторов с различными типами обратных связей.
Рис. 91. Схемы регуляторов частоты вращения с обратными связями:
а — жесткой; б — изодромной; в — комбинированной (жесткой силовой и изодромной)
Как известно, при наличии жесткой обратной связи регулятор работает со статической ошибкой или остаточной степенью неравномерности. Конструктивно жесткие обратные связи выполняются таким образом, что имеется возможность изменять остаточную степень неравномерности за счет изменения плеч рычага обратной связи.
В отличие от регулятора с жесткой обратной связью в регуляторах с изодромной обратной связью неравномерность появляется только в режиме переходного процесса, а по окончании его исчезает. Поэтому изодромные регуляторы называют также регуляторами с временным статизмом.
В регуляторах с комбинированной обратной связью остаточная степень неравномерности за счет настройки может изменяться от нуля до своего максимального значения (6-12%). Остаточная степень неравномерности требуется для обеспечения параллельной работы двигателей, а также для уменьшения колебания цикловой подачи в случае работы двигателя в условиях периодически изменяющейся нагрузки (например, штормовые условия).