
- •Конспект лекций
- •Введение
- •Раздел I
- •Глава 1
- •1.2. Элементы систем автоматического регулирования
- •1.2.1. Чувствительные элементы и датчики
- •1.2.2. Усилители
- •1.2.3. Электромагнитные реле
- •1.3. Объекты регулирования
- •1.3.1. Дифференциальное уравнение динамики объекта
- •1.3.2. Решение дифференциального уравнения
- •1.4. Автоматические регуляторы
- •1.4.1. Взаимодействие объекта и регулятора
- •X(t) — регулирующее воздействие; g(t) — управляющее воздействие
- •1.4.2. Выбор типа и настройки регулятора
- •Вопросы для самоконтроля:
- •Глава 2 передаточные функции и частотные характеристики
- •2.1. Передаточная функция
- •2.2. Частотная характеристика
- •2.3. Типовые динамические звенья
- •2.4. Соединение звеньев, алгебра передаточных функций
- •2.5. Уравнение динамики замкнутой системы
- •Глава 3
- •3.2. Критерий устойчивости Гурвица
- •3.3. Критерий устойчивости Михайлова
- •3.4. Качество регулирования
- •Раздел II
- •Глава 4
- •4.2. Задачи автоматизации котельной установки
- •4.3. Регулирование уровня воды в барабане котла
- •4.3.1. Одноимпульсная сар уровня воды с термогидравлическим регулятором
- •4.3.2. Одноимпульсная сар уровня воды с изодромным регулятором типа «Аскания»
- •4.3.3. Многоимпульсные регуляторы уровня воды
- •4.3.4. Регулирование производительности котельно-питательного насоса
- •4.4. Регулирование температуры перегретого пара
- •4.4.1. Регулирование температуры впрыском конденсата
- •4.4.2. Регулирование температуры в поверхностных пароохладителях
- •4.5. Регулирование горения
- •4.5.1. Схема регулирования горения с параллельным включением контуров
- •Осушение
- •4.5.2. Схема регулирования горения с последовательным включением контуров
- •4.6. Системы защиты и сигнализации котлов
- •4.7. Регулирование вспомогательных и утилизационных котлов
- •Вопросы для самоконтроля:
- •Глава 5 автоматизация паротурбинных установок
- •5.1. Регулируемые величины пту
- •5.2. Регулирование частоты вращения вала
- •5.3. Регулирование давления пара в уплотнениях
- •5.4. Регулирование давления в системе отбора пара
- •5.5. Регулирование температуры масла в системе смазки
- •5.6. Системы защиты паротурбинной установки
- •Вопросы для самоконтроля:
- •Глава 6 автоматизация газотурбинных установок
- •6.1. Основные характеристики гту
- •6.2. Регулирование частоты вращения ротора
- •6.3. Регулирование температуры газа
- •6.4. Системы защиты газотурбинной установки
- •Вопросы для самоконтроля:
- •Глава 7 автоматизация судовых дизельных установок
- •7.1. Общие вопросы автоматизации
- •7.2. Регулирование частоты вращения
- •7.2.1. Классификация регуляторов частоты вращения
- •1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
- •7.2.2. Схемы регуляторов частоты вращения
- •7.2.3. Регулирование частоты вращения параллельно работающих дизелей
- •7.3. Регулирование температуры охлаждающей среды
- •7.3.1. Регуляторы температуры
- •Перепуск
- •7.3.2. Динамика сар температуры
- •7.4. Регулирование температуры наддувочного воздуха
- •7.5. Регулирование вязкости тяжелого топлива
- •7.6. Системы сигнализации и защиты
- •Параметры, подлежащие индикации, сигнализации и защите, для автоматизированных дизельных судов
- •7.7. Системы дистанционного автоматизированного управления
- •7.8. Системы централизованного контроля (сцк)
- •7.9. Перспективы развития автоматизации
- •Вопросы для самоконтроля:
- •Глава 8 автоматизация вспомогательных механизмов и систем
- •8.1. Автоматизация механизмов, обслуживающих энергетическую установку
- •8.1.1. Конденсатная система
- •8.1.2. Конденсационная установка
- •8.1.3. Система подготовки топлива
- •8.1.4. Система сжатого воздуха
- •8.2. Автоматизация холодильных установок провизионных камер
- •8.2.1. Регулирование температуры в холодильных камерах
- •8.2.2. Регулирование холодопроизводительности компрессоров
- •8.2.3. Регулирование заполнения испарителя жидким хладагентом
- •8.2.4. Регулирование давления конденсации
- •8.2.5. Автоматическое удаление воздуха из системы
- •8.2.6. Регулирование уровня масла в маслоотделителе
- •8.2.7. Удаление инея с охлаждающих батарей
- •8.3. Автоматизация установок кондиционирования воздуха
- •8.4. Автоматизация противопожарных систем
- •8.4.1. Противопожарная сигнализация
- •8.4.2. Система пожаротушения
- •8.5. Автоматизация балластно-осушительных систем
- •8.6. Вопросы охраны труда
- •Вопросы для самоконтроля:
- •Литература
- •Оглавление
- •98309 Г. Керчь, Орджоникидзе, 82.
2.4. Соединение звеньев, алгебра передаточных функций
Выше была рассмотрена динамика отдельных звеньев, которые входят в состав САР и взаимодействуют между собой. В реальных САР встречаются разнообразные схемы соединения звеньев, которые можно свести к последовательному и параллельному соединению, а также их комбинации. В свою очередь при параллельном соединении может иметь место одинаковое направление входа и выхода либо противоположное. Рассмотрим выражения передаточных функций комплекса элементарных звеньев при различных способах их включения.
Рис. 35. Схема последовательного соединения звеньев
Последовательное соединение. Рассмотрим цепочку, состоящую из трех последовательно соединенных звеньев (рис. 35). На вход первого звена поступает величина х, а на выход последнего — у. Результирующая передаточная функция при последовательном соединении звеньев равна произведению передаточных функций отдельных звеньев:
.
(66)
Параллельное соединение. Случай одинакового направления входа и выхода представлен на рис. 36.
Рис. 36. Схема параллельного соединения звеньев
Передаточная функция параллельно соединенных звеньев равна сумме передаточных функций отдельных звеньев:
.
(67)
Случай противоположного направления сигналов (охват звена обратной связью) представлен на рис. 37. При включении обратной связи входной сигнал х алгебраически суммируется с сигналом, прошедшим через звено обратной связи, и при отрицательной обратной связи он равен:
.
В этом случае передаточная функция будет иметь вид:
.
(68)
Рис. 37. Схема охвата звена обратной связью
При комбинированном соединении звеньев в САР необходимо контур разбить на отдельные цепи, в которых будут четко выражены последовательное и параллельное соединения, составить передаточные функции для этих цепей, а затем и для всего контура в целом. Таким образом, используя указанные зависимости, можно составить передаточную функцию сложной схемы, из которой при необходимости можно получить дифференциальное уравнение динамики системы.
Из
выражения (68) для передаточной функции
звена, охваченного обратной связью,
принимая
,
можно
легко получить выражение для передаточной
функции замкнутой системы, схема которой
показана на рис. 38.
Рис. 38. Схема замыкания звена
Передаточная функция замкнутой системы может быть представлена следующим образом:
,
(69)
где
— передаточная функция разомкнутой
системы.
2.5. Уравнение динамики замкнутой системы
Система автоматического регулирования состоит из ряда звеньев, динамика которых в общем случае описывается дифференциальными уравнениями. Так как элементы САР находятся во взаимодействии друг с другом, а сама система является замкнутой, то математическим описанием САР будет являться система дифференциальных уравнений динамики звеньев, входящих в систему и их связей. Путем исключения промежуточных координат систему дифференциальных уравнений можно привести к одному дифференциальному уравнению, которое включает в себя только входные воздействия и выходную, регулируемую величину.
В качестве примера рассмотрим систему автоматического регулирования частоты вращения вала теплового двигателя, принципиальная схема которой приведена на рис. 39.
Структурная схема этой САР изображена на рис. 40. Динамику звеньев, входящих в состав системы, запишем в операторной форме:
объект
—
;
чувствительный
элемент —
;
(70)
сервопривод
—
,
где у — регулируемая величина;
x2 — положение топливорегулирующего органа.
Рис. 39. Схемы САР частоты вращения вала дизель-генератора:
а — принципиальная; б — функциональная:
1 — золотник; 2 — поршень сервомотора; 3 — рычаг; 4 — грузы;
5 — муфта; 6 — вал регулятора;
СУ — корректирующее устройство; ЧЭ — чувствительный элемент;
ЗУ — задающее устройство; УС — устройство сравнения;
УУ — усилительное устройство; ИМ — исполнительный механизм;
f(t) — возмущающее воздействие; g(t) — управляющее воздействие
Решая систему (70), получим уравнение динамики замкнутой системы в операторной форме:
.
(71)
Для этой же САР составим дифференциальное уравнение по передаточным функциям звеньев.
Рис. 40. Структурная схема САР частоты вращения
вала дизель-генератора
Для случая, когда возмущение приложено к объекту, передаточная функция замкнутой САР будет иметь выражение
,
где
(для нашего случая)
—
передаточная функция объекта регулирования;
— передаточная
функция регулятора.
Тогда
.
Отсюда уравнение динамики замкнутой системы
аналогично уравнению (71).
Вопросы для самоконтроля:
Дать понятие о передаточной функции и частотной характеристики.
Что представляет собой мгновенный импульс?
Уравнение динамики замкнутой системы.
Литература [2, 5, 6].