
- •Конспект лекций
- •Введение
- •Раздел I
- •Глава 1
- •1.2. Элементы систем автоматического регулирования
- •1.2.1. Чувствительные элементы и датчики
- •1.2.2. Усилители
- •1.2.3. Электромагнитные реле
- •1.3. Объекты регулирования
- •1.3.1. Дифференциальное уравнение динамики объекта
- •1.3.2. Решение дифференциального уравнения
- •1.4. Автоматические регуляторы
- •1.4.1. Взаимодействие объекта и регулятора
- •X(t) — регулирующее воздействие; g(t) — управляющее воздействие
- •1.4.2. Выбор типа и настройки регулятора
- •Вопросы для самоконтроля:
- •Глава 2 передаточные функции и частотные характеристики
- •2.1. Передаточная функция
- •2.2. Частотная характеристика
- •2.3. Типовые динамические звенья
- •2.4. Соединение звеньев, алгебра передаточных функций
- •2.5. Уравнение динамики замкнутой системы
- •Глава 3
- •3.2. Критерий устойчивости Гурвица
- •3.3. Критерий устойчивости Михайлова
- •3.4. Качество регулирования
- •Раздел II
- •Глава 4
- •4.2. Задачи автоматизации котельной установки
- •4.3. Регулирование уровня воды в барабане котла
- •4.3.1. Одноимпульсная сар уровня воды с термогидравлическим регулятором
- •4.3.2. Одноимпульсная сар уровня воды с изодромным регулятором типа «Аскания»
- •4.3.3. Многоимпульсные регуляторы уровня воды
- •4.3.4. Регулирование производительности котельно-питательного насоса
- •4.4. Регулирование температуры перегретого пара
- •4.4.1. Регулирование температуры впрыском конденсата
- •4.4.2. Регулирование температуры в поверхностных пароохладителях
- •4.5. Регулирование горения
- •4.5.1. Схема регулирования горения с параллельным включением контуров
- •Осушение
- •4.5.2. Схема регулирования горения с последовательным включением контуров
- •4.6. Системы защиты и сигнализации котлов
- •4.7. Регулирование вспомогательных и утилизационных котлов
- •Вопросы для самоконтроля:
- •Глава 5 автоматизация паротурбинных установок
- •5.1. Регулируемые величины пту
- •5.2. Регулирование частоты вращения вала
- •5.3. Регулирование давления пара в уплотнениях
- •5.4. Регулирование давления в системе отбора пара
- •5.5. Регулирование температуры масла в системе смазки
- •5.6. Системы защиты паротурбинной установки
- •Вопросы для самоконтроля:
- •Глава 6 автоматизация газотурбинных установок
- •6.1. Основные характеристики гту
- •6.2. Регулирование частоты вращения ротора
- •6.3. Регулирование температуры газа
- •6.4. Системы защиты газотурбинной установки
- •Вопросы для самоконтроля:
- •Глава 7 автоматизация судовых дизельных установок
- •7.1. Общие вопросы автоматизации
- •7.2. Регулирование частоты вращения
- •7.2.1. Классификация регуляторов частоты вращения
- •1, 3, 4, 5 — Винтовые характеристики; 2 — внешняя характеристика;
- •7.2.2. Схемы регуляторов частоты вращения
- •7.2.3. Регулирование частоты вращения параллельно работающих дизелей
- •7.3. Регулирование температуры охлаждающей среды
- •7.3.1. Регуляторы температуры
- •Перепуск
- •7.3.2. Динамика сар температуры
- •7.4. Регулирование температуры наддувочного воздуха
- •7.5. Регулирование вязкости тяжелого топлива
- •7.6. Системы сигнализации и защиты
- •Параметры, подлежащие индикации, сигнализации и защите, для автоматизированных дизельных судов
- •7.7. Системы дистанционного автоматизированного управления
- •7.8. Системы централизованного контроля (сцк)
- •7.9. Перспективы развития автоматизации
- •Вопросы для самоконтроля:
- •Глава 8 автоматизация вспомогательных механизмов и систем
- •8.1. Автоматизация механизмов, обслуживающих энергетическую установку
- •8.1.1. Конденсатная система
- •8.1.2. Конденсационная установка
- •8.1.3. Система подготовки топлива
- •8.1.4. Система сжатого воздуха
- •8.2. Автоматизация холодильных установок провизионных камер
- •8.2.1. Регулирование температуры в холодильных камерах
- •8.2.2. Регулирование холодопроизводительности компрессоров
- •8.2.3. Регулирование заполнения испарителя жидким хладагентом
- •8.2.4. Регулирование давления конденсации
- •8.2.5. Автоматическое удаление воздуха из системы
- •8.2.6. Регулирование уровня масла в маслоотделителе
- •8.2.7. Удаление инея с охлаждающих батарей
- •8.3. Автоматизация установок кондиционирования воздуха
- •8.4. Автоматизация противопожарных систем
- •8.4.1. Противопожарная сигнализация
- •8.4.2. Система пожаротушения
- •8.5. Автоматизация балластно-осушительных систем
- •8.6. Вопросы охраны труда
- •Вопросы для самоконтроля:
- •Литература
- •Оглавление
- •98309 Г. Керчь, Орджоникидзе, 82.
М
Керченский государственный морской технологический университет
Кафедра «Судовые энергетические установки»
АВТОМАТИЗАЦИЯ СУДОВЫХ
ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК
Конспект лекций
для студентов дневной и заочной форм обучения
направления 6.070104 «Морской и речной транспорт»
специальности «Эксплуатация судовых энергетических установок»
Керчь, 2010
Автор: Крестлинг Н.А. к.т.н., доцент кафедры СЭУ КГМТУ;
Кулакова А.Н. ассистент кафедры
Рецензент: Конюков В.Л. к.т.н., доцент кафедры СЭУ КГМТУ;
Турега О.Н. доцент, зав. кафедрой Керченского института Таврического национального университета им. В.Вернадского
Методические указания рассмотрены и одобрены на заседании кафедры СЭУ КГМТУ,
протокол № 1 от 31.08.2010г.
Методические указания рассмотрены и рекомендованы к утверждению на заседании методической комиссии МФ КГМТУ,
протокол № 1 от 20.10.2010 г.
Методические указания утверждены на заседании Методического совета КГМТУ,
протокол №____от «___»__________201__г.
© Керченский государственный морской технологический университет
Введение
Автоматизация производственных процессов является ведущим направлением технического прогресса и одним из наиболее эффективных путей повышения производительности общественного труда.
Внедрение автоматизации на судах позволяет существенно повысить экономичность и моторесурс энергетических установок, сократить численность экипажа и эксплуатационные расходы, улучшить маневренные характеристики судов, облегчить труд моряков, способствует решению главной задачи — снижению себестоимости грузоперевозок в условиях безаварийного плавания.
Слова «автоматизация», «автоматика» происходят от греческого слова «автоматос», что означает «самодвижущийся» или «самодействующий».
В 50-е годы XVII столетия нидерландским механиком Гюйгенсом был разработан автомат, который должен был автоматически регулировать ход часов.
Начало промышленного использования автоматики принято считать с разработок в 1765 г. русским механиком И.И.Ползуновым поплавкого регулятора уровня воды в котле паровой машины и в 1784 г. английским механиком Джеймсом Уаттом центробежного регулятора частоты вращения вала паровой машины.
Практические разработки регуляторов способствовали к началу XIX в. развитию теории автоматического регулирования. Коренные изменения в развитии автоматики внесли фундаментальные работы Д.К.Максвелла «О регуляторах» (1866 г.), И.А.Вышнеградского «Об общей теории регуляторов» (1876 г.) и «О регуляторах прямого действия» (1877 г.), где регулятор и машина рассматривались как единая динамическая система.
Исключительно важны разработки А.М.Ляпунова, посвященные устойчивости. В работе «Общая задача об устойчивости движения» (1892 г.) он впервые дал точное определение устойчивости автоматических систем и предложил методы ее исследования.
Центральной проблемой автоматики вплоть до 40-х годов была проблема устойчивости. В ее решение особый вклад внесли английский ученый Э.Раус и немецкий – А.Гурвиц, предложившие алгебраические методы, а также американский ученый Х.Найквист и русский – А.В.Михайлов, разработавшие частотные методы исследования устойчивости.
Судовая энергетика сложилась в настоящее время в обширную научную и прикладную дисциплину, изучающую теорию автоматического регулирования и управления и построенные на ее основе судовые автоматические устройства и системы. Объектами автоматизации в ней являются различные технические средства (ТС) судна.
Установка на судах тепловых двигателей сразу же потребовала применения регуляторов частоты вращения. С развитием автоматизации общепромышленных электроприводов на судах стали применять системы управления (СУ) электроприводами вспомогательных механизмов (обслуживающих главный двигатель), шпилей, брамшпилей, грузовых лебедок, кранов и других механизмов.
Теоретической основой построения различных судовых дискретных логических управляющих устройств и комплексных систем управления (КСУ) является предложенная ирландским математиком Джорджем Булем алгебра логики и развития на ее основе теория конечных автоматов.
Комплексная автоматизация, являясь важнейшим проявлением научно-технического прогресса на морском транспорте, превращает современные суда, по существу, в человеко-машинные системы, изучение и эксплуатация которых требуют системного подхода.
Дальнейшее развитие комплексной автоматизации судов уже в настоящее время достигла такого уровня, когда можно практически осуществить безвахтенное обслуживание машинной техники. Дальнейшее развитие комплексной автоматизации связано с углублением централизации управления, применением цифровых вычислительных машин (ЦВМ), в том числе мини-ЦВМ и микро-ЦВМ, а также систем диагностики.