Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора ГМИ .docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
183.21 Кб
Скачать

30. Единицы измерения радиоактивности

Для сравнительной оценки радиоактивности горных пород применяются два вида единиц: единицы активности, или содержания в породах радиоактивных элементов, и единицы дозы, определяющие меру воздействия радиоактивных излучений на вещество.

Единицей активности в системе СИ принят беккерель (Бк). Беккерель равен активности нуклида в радиоактивном источнике, в котором за 1 с происходит один распад.

Внесистемная единица активности - кюри (Ки). Под единицей кюри понимается количество любого радиоактивного изотопа, в котором в 1 с происходит в среднем (3,7⋅1010) распадов, примерно столько же, сколько и в 1 г радия.

Масса радиоактивных элементов, соответствующий активности 1 Ки, возрастает с увеличением периода полураспада.

Единицы дозы излучения, нашедшие применение в медицине, позволяют проводить количественную оценку воздействия радиоактивных излучений на облучаемую среду. Поглощенная доза определяется как энергия излучения любого вида, поглощенная единицей массы любого вещества, и может измеряться в джоулях на килограмм (Дж/кг) или в эргах на грамм (эрг/г).

Единица поглощенной дозы в СИ - грей (Гр). Грей равен поглощенной дозе излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения, равная 1 Дж.

Внесистемной единицей поглощенной дозы ионизирующего излучения является рад (1рад = 100 эрг/г, или 10 -2 Дж/кг).

Единицей дозы излучения является рентген (Р). Один рентген соответствует поглощению такого количества рентгеновского или гамма-излучений, которое в 1 см3 сухого воздуха при температуре 0° С и давлении 760 мм рт. ст. (0,001293 г воздуха) образует ионы, несущие одну электростатическую единицу количества электричества каждого знака (2,083⋅109 пар ионов). Энергетический эквивалент рентгена: 1P = 88 эрг или 5,5⋅107 МэВ поглощенной энергии в 1 г воздуха.

31. Комплексное применение методов гис

Эффективное решение геологических и технологических задач возможно только на основе комплексного применения геофизических методов, имеющих различную петрофизическую основу (электрических, радиоактивных, акустических и т. д.).

Необходимость комплексирования геофизических методов обусловлена тем, что каждый из них, во-первых, теоретически некорректен, т.е. малым изменениям сигналов от изучаемых объектов могут соответствовать большие изменения их физико-геометрических параметров.

Во-вторых, по мере увеличения глубинности разведки уменьшается отношение величины сигнала к уровню геологических и технических помех. Поэтому, несмотря на совершенствование методов, отношение сигнал/помеха увеличивается слабо. По этим причинам определение геометрических и физических параметров аномалосоздающих объектов оказывается неоднозначным. Для ограничения некорректности необходима дополнительная информация: применение ряда методов с разными физическими основами, уровнем некорректности и точности разведки, использование параметрических скважин, с помощью которых можно определить петрофизические характеристики объектов, уточнить их геометрические размеры. Тем не менее повышение точности съемок, использование накопления сигналов, применение сложных компьютерных способов обработки и комплексирование методов должны обеспечить возрастание роли геофизики.

В связи с тем, что геологическая эффективность любого отдельно взятого геофизического метода оказывается не очень высокой, важной проблемой становится системный подход к изучению недр. Практически он сводится к внутриметодному геофизическому комплексированию, основанному на использовании различных физических полей, и межметодному комплексированию геофизических исследований совместно с другими геолого-разведочными. Поскольку разведываемые объекты характеризуются многообразием свойств и связей, то геологическая эффективность при их изучении в общем случае станет тем выше, чем более широким будет комплекс. В свою очередь, возрастание количества комплексируемых методов ведет к удорожанию стоимости исследований и увеличению времени на их выполнение. Проблема поиска компромисса между этими факторами - одна из сложных в теории и практике комплексирования геофизических исследований недр.

Целью геофизического комплексирования является выбор такого комплекса методов, который может обеспечить однозначное решение поставленной геологической задачи, т.е. получение минимальной погрешности в определении местоположения, геометрии разведываемых объектов и достоверной расшифровки их физических свойств.