
- •Атомно-молекулярное учение
- •2.10.1. Расчет относительных и абсолютных масс атомов и молекул
- •4) Строение атома
- •6.3. Атом водорода. Линейчатые спектры
- •Экспериментальное подтверждение гипотезы де Бройля. Опыт Дэвиссона и Джермера.
- •Дифракция электронов на двух щелях
- •Содержание
- •Распределение электронов по орбиталям в водородоподобных и многоэлектронных атомах[править | править исходный текст]
- •Взаимодействие ионов
- •Ионные радиусы
- •Энергия ионной связи
- •Ковалентная химическая связь
- •Виды гибридизации[править | править исходный текст]
- •Межмолекулярная и внутримолекулярная водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •Силы межмолекулярного взаимодействия
- •Недостатки существующей классификации термодинамических систем
- •Внутренняя энергия и энтальпия
- •Закон Гесса[править | править исходный текст]
- •4. Энергия Гиббса. (g).
- •5. Химический потенциал ().
- •Второй закон термодинамики. Направление химических процессов.
- •[ Лед ] ↔ {вода} ↔ (пар)
- •Первый закон Рауля
- •Отклонения от закона Рауля
- •Второй закон Рауля
- •Понижение температуры кристаллизации растворов
- •Повышение температуры кипения растворов
- •Криоскопическая и эбулиоскопическая константы
- •Растворы электролитов
- •Свойства разбавленных растворов неэлектролитов
- •Понижение давления пара над раствором
- •Температура кипения и замерзания
- •Значения криоскопических и эбуллиоскопических постоянных некоторых растворителей
- •Основные положения теории Аррениуса.
- •Диссоциация солей, кислот и оснований
- •Классификация
- •2.Сильные и слабые электролиты. Константа диссоциации.
- •3.Закон разбавления Оствальда.
- •Изображение реакций ионного обмена
- •Правила написания реакций ионного обмена
- •Окислительно-восстановительные реакции подразделяют на межмолекулярные, внутримолекулярные, диспропорционирования (или самоокисления-самовосстановления), конпропорционирования.
- •Измерение потенциалов
- •Способы устранения омической составляющей при измерении
- •Основные факторы, влияющие на потенциал
- •Вывод уравнения Нернста
- •Применение электролиза в технике
- •Формулировка законов
- •Математический вид
- •Электрохимическая коррозия
- •Коррозия оцинкованного и луженого железа при местном повреждении
2.Сильные и слабые электролиты. Константа диссоциации.
Электролитическая диссоциация – равновесный процесс, т.е. одновременно с процессом ионизации происходит и моляризация (соединение ионов в молекулы). Для количественной характеристики равновесия процесса ионизации было введено понятие степени диссоциации . Степень диссоциации зависит от ряда факторов: природа электролита и растворителя, концентрация электролита в растворе, температура (в большинстве случаев электролитическая диссоциация - эндотермический процесс, поэтому увеличение температуры приводит к незначительному возрастанию значения .
Для растворов с молярной концентрацией См = 0,1 моль/л в зависимости от величины степени диссоциации существуют следующие условные границы силы электролитов:
для сильных электролитов - > 30 %
для слабых электролитов - < 3 %
для электролитов средней силы – 3 % < < 30 %
Сильные электролиты в водных растворах полностью диссоциируют на ионы. Их диссоциация происходит необратимо:
HNO3 H+ + NO3-
Слабые электролиты в водном растворе диссоциируют частично, т.к. их диссоциация является обратимым равновесным процессом, что и отражается знаком обратимости в уравнениях диссоциации:
СНСООН ═ СНСОО- + Н+
Применительно к водным растворам сильными электролитами являются:
1. Сильные кислоты:
HCl, HBr, HY, H2SO4, HNO3, HСlO4, HMnO4
2. Сильные основания (щелочи):
гидроксиды щелочных (группа IA) и щелочноземельных металлов (г руппа IIA периодической системы, кроме гидроксидов Be(OH)2, Mg(OH)2).
3. Большинство растворимых солей (исключения: Fe (SCN)3, Mg(CN)2, HgCI2, Hg(CN)2 и др.)
К слабым электролитам относятся:
1. Слабые кислоты:
H2CO3, H2S, H3BO3, HCN, HNO2, H3PO4, H2SO3, H2SiO3 и большинство органических кислот.
2. Слабые основания и амфотерные гидроксиды металлов: Be(OH)2, Mg(OH)2, Fe(OH)2,Zn(OH)2, гидроксид аммония NH4OH, а также органические основания – амины (CH3NH2 ) и амфолиты (H3N+CH2COO-) .
3. Очень слабым электролитом является вода, = 2 ∙10-9.
Необходимо отметить, что между силой электролита и его растворимостью нет прямой связи. Хорошо растворимые в воде вещества могут быть сильными электролитами (HCl, NaOH, NaCl), слабыми электролитами (CH3COOH, NH4OH), неэлектролитами (C2H5OH, C6H12O6). С другой стороны, некоторые соли плохо растворимы в воде, например в 1 л воды растворяется только 2 мг BaSO4, но все это количество соли существует в растворе только в виде ионов, поэтому BaSO4 - сильный электролит.
Для характеристики силы электролита неудобно использовать только величину степени диссоциации, т.к. для этого необходимо иметь растворы одинаковых концентраций. Количественной характеристикой процесса диссоциации слабых электролитов является константа диссоциации.
CH3COOHCH3COO++ H-
В растворах слабых электролитов устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. Это равновесие количественно характеризуется константой равновесия, которая применительно к процессу диссоциации называется константой диссоциации:
Н+•СН3СОО-
Кдисс = СН3СООН
Константа диссоциации электролита не зависит от концентрации раствора, но зависит от температуры, а также от природы растворенного вещества и растворителя и при данных условиях является постоянной величиной. Кдисс показывает отношение концентрации ионов в растворе слабого электролита к концентрации недиссоциированных молекул. У сильных электролитов константа диссоциации отсутствует.
Константа диссоциации слабых электролитов является мерой их силы: чем меньше значение константы, тем слабее электролит.