
- •Атомно-молекулярное учение
- •2.10.1. Расчет относительных и абсолютных масс атомов и молекул
- •4) Строение атома
- •6.3. Атом водорода. Линейчатые спектры
- •Экспериментальное подтверждение гипотезы де Бройля. Опыт Дэвиссона и Джермера.
- •Дифракция электронов на двух щелях
- •Содержание
- •Распределение электронов по орбиталям в водородоподобных и многоэлектронных атомах[править | править исходный текст]
- •Взаимодействие ионов
- •Ионные радиусы
- •Энергия ионной связи
- •Ковалентная химическая связь
- •Виды гибридизации[править | править исходный текст]
- •Межмолекулярная и внутримолекулярная водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •Силы межмолекулярного взаимодействия
- •Недостатки существующей классификации термодинамических систем
- •Внутренняя энергия и энтальпия
- •Закон Гесса[править | править исходный текст]
- •4. Энергия Гиббса. (g).
- •5. Химический потенциал ().
- •Второй закон термодинамики. Направление химических процессов.
- •[ Лед ] ↔ {вода} ↔ (пар)
- •Первый закон Рауля
- •Отклонения от закона Рауля
- •Второй закон Рауля
- •Понижение температуры кристаллизации растворов
- •Повышение температуры кипения растворов
- •Криоскопическая и эбулиоскопическая константы
- •Растворы электролитов
- •Свойства разбавленных растворов неэлектролитов
- •Понижение давления пара над раствором
- •Температура кипения и замерзания
- •Значения криоскопических и эбуллиоскопических постоянных некоторых растворителей
- •Основные положения теории Аррениуса.
- •Диссоциация солей, кислот и оснований
- •Классификация
- •2.Сильные и слабые электролиты. Константа диссоциации.
- •3.Закон разбавления Оствальда.
- •Изображение реакций ионного обмена
- •Правила написания реакций ионного обмена
- •Окислительно-восстановительные реакции подразделяют на межмолекулярные, внутримолекулярные, диспропорционирования (или самоокисления-самовосстановления), конпропорционирования.
- •Измерение потенциалов
- •Способы устранения омической составляющей при измерении
- •Основные факторы, влияющие на потенциал
- •Вывод уравнения Нернста
- •Применение электролиза в технике
- •Формулировка законов
- •Математический вид
- •Электрохимическая коррозия
- •Коррозия оцинкованного и луженого железа при местном повреждении
Классификация
Исходя из степени диссоциации все электролиты делятся на две группы
Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).
Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.
Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.
28)
28
Причину отклонения от законов Вант-Гоффа и Рауля впервые установил в 1887 г шведский ученый Сванте Аррениус, предложив теорию электролитической диссоциации, которая основывается на двух постулатах:
Вещества, растворы которых являются электролитами (т.е. проводят электрический ток), при растворении распадаются на частицы (ионы), которые образуются в результате диссоциации растворенного вещества. Число частиц при этом увеличивается. Ионы, заряженные положительно получили название катионы, т.к. под действием электрического поля движутся к катоду. Ионы заряженные отрицательно – анионы, т.к. под действием электрического поля движутся к аноду. К электролитам относятся соли, кислоты и основания.
Al(NO3)3 Al ³+ + NO3ֿ
Электролиты диссоциируют не полностью. Способность вещества к диссоциации характеризуется значением степени электролитической диссоциации - . Степенью электролитической диссоциации называется отношение количества вещества электролита, распавшегося на ионы, к общему количеству растворенного электролита.
= nионизированное / Nрастворенное
n-количество молекул распавшихся на ионы
N-общее количество молекул в растворе
- степень электролитической диссоциации
Значение может изменяться от 0 до 1, часто выражается в процентах (от 0 до 100%). Степень диссоциации показывает, какая часть растворенного количества электролита при данных условиях находится в растворе в виде гидратированных ионов.
Причины электролитической диссоциации обусловлены:
характером химических связей в соединениях (к электролитам относятся вещества с ионной или ковалентной сильнополярной связью)
характером растворителя: молекула воды полярна, т.е. является диполем
Таким образом, электролитической диссоциацией называют процесс распада ионных или полярных соединений на ионы под действием полярных молекул растворителя.
Механизм электролитической диссоциации.
Теорию Аррциуса значительно развили русские ученые И.А.Каблуков и В.А.Кистяковский, они доказали, что при растворении электролита происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы, т.е. в растворе находятся гидратированные ионы.
Легче всего диссоциация вещества с ионной связью. Последовательность процессов происходящих при диссоциации веществ с ионной связью (солей, щелочей) будет такой:
ориентация молекул диполей воды около ионов кристалла
гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла
диссоциация (распад) кристалла электролита на гидратированные ионы.
С учетом гидратации ионов уравнение диссоциации выглядит так:
NaCl + X H2O Na + n •H2O + Cl - n• H2O
Так как состав гидратированных ионов не всегда постоянен, уравнение записывают сокращенно:
NaCl Na+ + Cl-
Аналогично происходит и процесс диссоциации веществ с полярной связью, последовательность происходящих процессов следующая:
ориентация молекул воды вокруг полюсов молекулы электролита
гидратация (взаимодействие) молекулы воды с молекулами электролита
ионизация молекул электролита (превращение ковалентной полярной связи в ионную)
диссоциация (распад) молекул электролита на гидратированные ионы.
HCl + H2O H3O++ Cl-
HCl H+ + Cl-
В процессе диссоциации ион водорода в свободном виде не встречается, только в виде иона гидроксония H3O+.