Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы по химии.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.58 Mб
Скачать

Недостатки существующей классификации термодинамических систем

1. Существующая в современной физике классификация термодинамических систем рассматривает системы только как тепломеханические, учитывая всего две формы движения: тепловую и механическую. Рассматриваемые в таком плане термодинамические системы являются лишь частным случаем физических систем, поскольку каждая физическая система имеет гораздо больше различных форм движения2. В.Кошарский (2006) указывает на то, что определение физической системы, принятое в современной физике, ограничивается лишь статической составляющей физических систем. Соответственно, та термодинамика, которой соответствует вышеприведенная классификация, рассматривает только квазистатические обратимые процессы. Поэтому в термине “термодинамические системы“, как его понимают в приведенной классификации, присутствие второй половины слова “динамические“ следует поставить под вопрос, так как слово “динамика“ обычно связано с движением и, следовательно, с необратимыми диссипативными потерями.  Систематизация физических величин, основанная на принципах энергодинамики, не может ограничиться вышеприведенной классификацией термодинамических систем. Потому что в указанной классификации не учитываются ни динамика энергообмена между системой и окружающей средой, ни необратимые диссипативные потери.  3. Понятие “энергообмен“ должно пониматься не как обмен энергией, а как обмен материальными энергоносителями, переносящими энергию. Сама по себе энергия является физической величиной и поэтому переноситься не может. Понятие “обмен веществом“ является тем же самым обменом материальными энергоносителями, только на структурном уровне материи, называемом “вещество“. С этой точки зрения обмен веществом является частным случаем энергообмена на одном из уровней, а энергообмен осуществляется на всех структурных уровнях. По этой причине определения систем в приведенной выше классификации термодинамических систем следует изменить.  Таким образом, физические системы, как более обобщающее понятие по сравнению с термодинамическими системами, нуждаются в своей собственной классификации.

Внутренняя энергия и энтальпия

1. Внутренней энергией U называется энергия системы, зависящая только от ее термодинамического состоянии. Для системы, нe подверженной действию внешних сил и находящейся в состоянии макроскопического покоя, внутренняя энергия представляет собой полную энергию системы. В некоторых простейших случаях внутренняя энергия равна разности между полной энергией W системы и суммой кинетической энергии WK ее макроскопического движения и потенциальной энергии Wп, обусловленной действием на систему внешних силовых полей: U = W - (Wk + Wп) Внутренняя энергия системы равна сумме: а) кинетической энергии хаотического движения микрочастиц системы (молекул, атомов, ионов, свободных электронов и др.), б) потенциальной энергии взаимодействия этих частиц, в) энергии взаимодействия атомов или ионов в молекулах, г) энергии электронных оболочек атомов и ионов, д) внутриядерной энергии, с) энергии электромагнитного излучения. 2. Внутренняя энергия является однозначной функцией состояния системы: ее изменение DU при переходе системы из состояния 1 в состояние 2 не зависит от вида процесса и равно DU = U2 - U1 3° Внутренняя энергия может быть определена только с точностью до постоянного слагаемого Я/0, которое не может быть найдено методами термодинамики. Однако это несущественно, так как при термодинамическом анализе системы приходится иметь дело не с абсолютными зна-чениями ее внутренней энергии, а с не зависящими от Ua изменениями этой энергии в различных процессах. По-этому часто полагают f/0 = 0, а под внутренней энергией системы понимают только тс ее составляющие, которые изменяются в рассматриваемых процессах. Например, при не слишком высоких температурах внутреннюю энер-гию идеального газа можно считать равной сумме кине-тических энергий хаотического движения его молекул. 4. Энтальпией H (теплосодержанием, тепловой функцией) называется функция состояния термодинамической системы, равная сумме ее внутренней энергии и произведения давления на объем системы, выраженного в тех же единицах: H = U + pV

16)

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).

  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение

4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж

показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции.

В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.