
- •Введение
- •1. Коллекторские свойства горных пород
- •1.1. Типы пород–коллекторов
- •1.2. Залегание нефти, газа и воды
- •1.3. Гранулометрический состав горных пород
- •1.4. Пористость
- •1.4.1. Виды пористости
- •1.4.2. Структура порового пространства
- •1.5. Проницаемость
- •1.5.1. Линейная фильтрация нефти и газа в пористой среде
- •1.5.2. Радиальная фильтрация нефти и газа в пористой среде
- •1.5.3. Классификация проницаемых пород
- •1.5.4. Оценка проницаемости пласта, состоящего из нескольких продуктивных пропластков различной проницаемости
- •1.5.5. Зависимость проницаемости от пористости
- •1.5.6. Виды проницаемости
- •1.6. Насыщенность коллекторов
- •1.7. Зависимости проницаемости от насыщенности коллекторов
- •1.8. Удельная поверхность
- •1.9. Коллекторские свойства трещиноватых пород
- •1.10. Карбонатность горных пород
- •1.11. Набухаемость пластовых глин
- •1.12. Механические свойства горных пород
- •1.13. Тепловые свойства горных пород
- •Состав и физико-химические свойства природных газов
- •2.1. Состав природных газов
- •Химический состав газа газовых месторождений, об. %
- •Химический состав газа газоконденсатных месторождений, об. %
- •Химический состав попутного газа нефтяных месторождений, об. %
- •2.2. Способы выражения состава
- •2.3. Аддитивный подход расчета физико-химических свойств углеводородных газов
- •2.4. Уравнение состояния
- •2.5. Состояние реальных газов
- •Критические давления, температуры и коэффициенты сверхсжимаемости компонентов нефтяных газов
- •2.6. Вязкость газов
- •2.7. Растворимость газов в нефти и воде
- •2.8. Упругость насыщенных газов
- •3. Состав и физико-химические свойства нефтей
- •3.1. Состав нефти
- •3.2. Физико–химические свойства нефти
- •3.2.1. Плотность нефти
- •3.2.2. Вязкость нефти
- •3.2.3. Реологические свойства нефтий
- •3.2.4. Газосодержание нефтей
- •3.2.5. Давление насыщения нефти газом
- •3.2.6. Сжимаемость нефти
- •3.2.7. Объёмный коэффициент нефти
- •3.2.8. Тепловые свойства нефтей
- •3.2.9. Электрические свойства нефтей
- •3.3. Различие свойств нефти в пределах нефтеносной залежи
- •4. Фазовые состояния углеводородных систем
- •4.1. Схема фазовых превращений однокомпонентных систем
- •4.2. Фазовые состояния углеводородных смесей
- •4.3. Фазовые переходы в нефти, воде и газе
- •5. Состав и физико-химические свойства пластовой воды
- •5.1. Химические свойства пластовых вод
- •5.1.1. Минерализация пластовой воды
- •5.1.2. Тип пластовой воды
- •5.1.3. Жесткость пластовых вод
- •5.1.4. Показатель концентрации водородных ионов
- •5.2. Физические свойства пластовых вод
- •5.2.1. Плотность
- •5.2.2. Вязкость
- •5.2.3. Сжимаемость
- •5.2.4. Объёмный коэффициент
- •5.2.5. Тепловые свойства
- •5.2.6. Электропроводность
- •5.3. Характеристика переходных зон
- •6.1. Роль поверхностных явлений в фильтрации
- •6.3. Смачивание и краевой угол
- •6.4. Работа адгезии и когезии, теплота смачивания
- •6.5. Кинетический гистерезис смачивания
- •Рекомендуемая литература
- •Содержание
- •Физика пласта
2.3. Аддитивный подход расчета физико-химических свойств углеводородных газов
Нефтяной газ при нормальных условиях содержит неполярные углеводороды – смесь углеводородов от С1 до С4: метан, этан, пропан, изо-бутан и н-бутан. С точки зрения физики к газам можно применять законы для идеальных систем.
То есть нефтяной газ – это идеальная система.
С точки зрения химии – идеальным называется газ силами взаимодействия между молекулами которого можно пренебречь.
С точки зрения термодинамики идеальным называется газ, для которого справедливы равенства:
(∂Е / ∂V)T = 0, z = P·V/Q·R·T = 1, (2.8)
где Е – внутренняя энергия парообразования, Дж/моль;
z – коэффициент, характеризующий степень отклонения реального газа от закона идеального газа.
С точки зрения математики – это аддитивная система. Следовательно, для оценки свойств нефтяного газа (при нормальных или стандартных условиях) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):
, (2.9)
где Ni – мольная доля;
gi – весовая доля;
Vi – объёмная доля;
Пi – параметр i-го углеводорода или неуглеводородного компонента.
Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведет себя так, как если бы он в данной смеси был один.
Для идеальных газов давление смеси газа равно сумме парциальных давлений компонентов (закон Дальтона):
, (2.10)
где Р – давление смеси газов;
рi – парциальное давление i-го компонента в смеси,
или
, (2.11)
. (2.12)
То есть парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.
Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага:
, (2.13)
где V – объём смеси газов;
Vi – объём i-го компонента в смеси.
или аналогично уравнениям 2.11–2.12 объём компонента газа можно оценить:
. (2.14)
Как аддитивную величину рассчитывают и плотность смеси газов:
, (2.15)
где ρi – плотность i–го компонента;
Ni – мольная доля i–го компонента.
Молекулярная масса смеси рассчитывается по принципу аддитивности для смесей, состав которых выражен в мольных или объёмных долях по формуле 2.14 (левое выражение). Для смесей, состав которых выражен в массовых процентах по формуле 2.14 (правое выражение):
. (2.16)
Рассмотрим пример. При приготовлении рекомбинированной пробы смешивают следующие объёмы (V) газов: 100 м3 пропана (C3H8), 75 м3 изобутана (i-С4Н10) и 75 м3 нормального бутана (n-С4Н10).
Найти молекулярную массу смеси (Мсм).
Дано: Vi, м3 Mi, кг/моль
C3H8 100 44
i-C4H10 75 58
n-C4H10 75 58
Решение. Находим общий объём газовой смеси: 100+75+75=250 (м3), и рассчитываем ее состав в объёмный процентах:
250 м3 – 100 %,
100 м3 – Х %;
Х = 100•100 / 250 = 40 (%) или VC3H8 = 0,4 (в долях);
i-C4H10 – X % X = 75•100 / 250 = Vi-C4H10 = 30 % = 0,3 (в долях);
n-C4H10 – 30 % Vn-C4H10 = 30 % = 0,3 (в долях).
Зная, что Vi = Ni, и зная молекулярные массы компонентов смеси: C3H8 – 44; C4H10 – 56, рассчитаем величину Mсм:
Mсм = Mi•Ni = 44•0,4 + 58•0,3 + 58•0,3 = 17,6 + 17,4•2 = 52,4 (кг/моль).