
- •26. Усилительные свойства дифференциального усилителя.
- •Принцип действия
- •Коэффициент усиления синфазного сигнала
- •Коэффициент усиления дифференциального сигнала
- •Выходное напряжение сдвига
- •27. Статические ошибки операционных усилителей. Неинвертирующий усилитель
- •Решая полученное уравнение относительно , получим .
- •Инвертирующий усилитель
- •Дифференциальное включение оу
- •28. Влияние входных токов операционного усилителя на величину напряжения сдвига. Выходное напряжение сдвига
- •Основные параметры операционного усилителя
- •29. Инвертирующий усилитель на базе операционного усилителя с обратной связью Инвертирующий усилитель
- •Цифро-аналоговые преобразователи: структура, основные характеристики.
- •Структура микроэлектронных ацп
- •Параметры ацп
- •Ацп последовательного счета
- •Ацп последовательного приближения
- •Паралельные ацп. Ацп параллельного преобразования
- •Операционный усилитель с обратной связью в дифференциальном включении Дифференциальное включение оу
- •Входное сопротивление усилителей сигналов на основе операционных усилителей
- •Регулировка коэффициента усиления в усилителях сигналов на основе операционных усилителей. Коэффициент усиления синфазного сигнала
- •Коэффициент усиления дифференциального сигнала
- •Частотная характеристика операционного усилителя с обратной связью Амплитудно-частотная характеристика оу с цепью отрицательной обратной связи
- •Его логарифмические ачх -б и фчх - в
- •Скорость нарастания выходного сигнала
- •Генераторы кодов на основе счетчиков
- •Компараторы аналоговых сигналов
- •Динамические параметры оу
- •(Ачх) и (фчх) характеристики одного каскада оу
- •Структура операционного усилителя. Назначение выводов, основные параметры
- •Основные параметры операционного усилителя
- •Частотная характеристика трехкаскадного операционного усилителя без обратной связи
- •Выбор частоты дискретизации непрерывных сигналов Временная дискретизация непрерывных сигналов
- •Диф усилитель
- •Принцип действия
- •Статистические и динамические параметры ацп
- •Не Инвертирующий усилитель на базе операционного усилителя с обратной связью. Неинвертирующий усилитель
- •Решая полученное уравнение относительно , получим .
Диф усилитель
Дифференциальный усилитель (ДУ) является основным узлом важнейшего элемента аналоговой интегральной электроники – операционного усилителя (ОУ). Схема ДУ показана на рис. 10.1. Он состоит из двух одинаковых (симметричных) плеч, каждое из которых содержит транзистор и резистор. Выходным напряжением является разность коллекторных потенциалов, а входным – разность базовых потенциалов.
Рис. 10.1. Дифференциальный усилитель
В общую эмиттерную цепь включен источник тока I0 (генератор тока). Он обеспечивает постоянство суммы
Iэ1 + Iэ2 = I0 = const
и стабильность рабочей точки токов Iэ0 и напряжений Uк0.
Принцип действия
В основу ДУ положена идеальная симметрия его плеч, т. е. идентичность параметров транзис-торов Т1, Т2 и равенство сопротивлений Rк1, Rк2. При этом в отсутствии сигнала токи через транзисторы и коллекторные потенциалы будут одинаковы, а выходное напряжение будет равно нулю. Нулевое значение Uвых так же сохраняется при одновременном и одинаковом изменении токов в обоих плечах. Таким образом, в идеальном ДУ дрейф выходного напряжения отсутствует, хотя в каждом из плеч он может быть сравнительно большим.
Подадим на базы транзисторов одинаковые по величине и совпадающие по фазе напряжения Uб1 = Uб2 (синфазные сигналы). Если источник тока I0 идеальный (т. е. Ri = ), то токи в обеих ветвях и коллекторные потенциалы останутся неизменными и выходное напряжение Uвых останется равным нулю. Если Ri , то появится приращение тока I0, но оно распределится поровну между обеими ветвями ДУ и коллекторные потенциалы изменятся одинаково и сохранится Uвых = 0.
Если подать на базы напряжения равной величины, но противо-
положных знаков (Uб1 и Uб2 = – Uб1), т. е. дифференциальные сигналы, то их разность по определению будет входным сигналом ДУ:
Uвх = Uб1 – Uб2.
Вследствие этого приращения токов и коллекторных потенциалов в плечах ДУ будут одинаковыми по величине, но разного знака. В результате появится выходное напряжение Uвых = Uк1 – Uк2 0.
Следовательно, идеальный ДУ реагирует только на дифферен-циальный или разностный сигнал. Отсюда вытекает название этого типа усилителей.
Дифференциальный усилитель (рис. 10.11) представляет собой комбинацию инвертирующей и неинвертирующей схем.
Рис. 10.11. Дифференциальный усилитель
С учетом Iсм 0 и Uд 0 составим систему уравнений
, при и
, при
, при Uд 0
и, решая их относительно выходного напряжения, получим:
.
Обычно в такой схеме , , поэтому можно записать
.
На основе рассмотренных типовых включений ОУ реализуется большое количество схем различного назначения.
Статистические и динамические параметры ацп
Аналого-цифровой преобразователь (АЦП) – устройство, преобразующее значение непрерывной аналоговой величины в эквивалентный ей цифровой код.
Характеристика преобразования (ХП). При подаче на вход
Рис. 11.3. Характеристика преобразования ЦАП
ЦАП цифровых двоичных комбинаций, управляющих состояниями ключей и меняющихся от 0 до, 2N – 1 , на его выходе появится ступенчато нарастающее напряжение (рис.11.3). Высота каждой ступени соответствует шагу кван- тования Uкв. На харак- теристике преобразования можно выделить две характерные точки, это начальная и конечная точки ХП, которые определяются начальным и конечным значениями входного кода. Так как Uкв определяет минимальное значение выходное напряжения аналогового сигнала Uвых min = Uкв , то при выборе его значения необходимо учитывать также шумовые факторы и погрешности усиления масштабирующих усилителей.
Разрядность – число двоичных разрядов входного кода (N).
Диапазон выходной величины – интервал значений выходной аналоговой величины от начальной до конечной точки ХП.
Относительная разрешающая способность определяется как величина обратная числу уровней квантования
.
Абсолютная разрешающая способность – численно равна шагу квантования
,
где Uпш – напряжение полной шкалы, соответствующее максимальному выходному напряжению, 2N – 1 – количество ступеней квантования.
Абсолютная погрешность преобразования dпш показывает максимальное отклонение выходного напряжения в конечной точке реальной характеристики преобразования от выходного напряжения в конечной точке идеальной характеристики преобразования (рис. 11.4).
Рис. 11.4. Погрешности преобразования ЦАП
Абсолютная погрешность преобразования оценивается в процентах или долях единицы младшего разряда (ЕМР). ЕМР – среднее значение ступени квантования по всей характеристике преобразования.
Интегральная нелинейность преобразования ЦАП – dлн определяет максимальное отклонение реальной ХП от идеальной и оценивается также в долях ЕМР.
Дифференциальная нелинейность преобразования ЦАП – dдиф.лн численно равна максимальной разности двух соседних шагов квантования.
dдиф.лн = Uкв 2 – Uкв 1
Дифференциальная нелинейность также оценивается в долях ЕМР.
Время установления tуст выходного напряжения или тока – интервал времени от начала изменения выходного двоичного кода от минимального до максимального значения до момента когда выходной аналоговый сигнал достигнет заданной величины.
Максимальная частота преобразования fпр – наибольшая частота смены входных кодовых наборов.
Статические параметры АЦП во многом по смыслу аналогичны статическим параметрам ЦАП и рассмотрены в предыдущих параграфах.
Среди динамических параметров АЦП основными являются:
максимальная частота преобразования –ретизации входного сигнала;
апертурное время – время, в течение которого сохраняется неопределенность между значением выборки и временем, к которому оно относится;
апертурная неопределенность – случайное изменение апертурного времени в конкретной точке характеристики преобразования;
время кодирования – время, в течение которого осуществляется непосредственное преобразование установившегося значения входного сигнала (время от начала импульса запуска до появления выходного кода).