Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kratky_kurs_lektsy_po_fizike.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.04 Mб
Скачать

35

Кинематика Математические операции над векторными величинами

1.Сложение векторов

а) и сонаправлены:

б) и направлены противоположно:

в) , используется правило параллелограмма:

.

2 .Вычитание векторов

  1. Производная вектора

,

– знак изменения,

d – знак бесконечно малого изменения.

  1. Понятие интеграла.

.

Если n – велико, а - мало, то .

При .

Примеры интегралов: , , .

2. Основные кинематические понятия и характеристики.

Механическое движение - это изменение положения тел или их частей в пространстве с течением времени.

Материальной точкой называют тело, размерами и формой которого можно пренебречь в условиях данной задачи.

Абсолютно твердым телом называют тело, деформациями которого можно пренебречь в условиях данной задачи.

Поступательным назвали такое движение, при котором любая прямая, проведенная в теле, остается параллельной самой себе (рис.1).

характеристики быстроты изменения скорости вводится понятие ускорения.

Средним ускорением называют отношение изменения скорости к интервалу времени t, за которое это изменение произошло:

, .

Направление вектора совпадает с направлением вектора .

Мгновенное ускорение - векторная величина, равная первой производной скорости по времени:

;

.

3. Типы прямолинейного движения:

а) переменное движение - движение, при котором изменяются как скорость, так и ускорение,

б) равнопеременное движение – движение с постоянным ускорением,

,  - равноускоренное,   - равнозамедленное,

; ,

,

; ;

в) равномерное движение – движение с постоянной скоростью,

, .

Тангенциальное ускорение характеризует изменение скорости по величине Его модуль равен .

Нормальное ускорение характеризует изменение скорости по направлению,

направлено вдоль радиуса R к центру окружности: .Полотно 55

Полное ускорение материальной точки при криволинейном движении характеризует быстроту изменения скорости как по величине, так и по направлению

, .

Кинематические характеристики вращательного движения и их связь с характеристиками поступательного движения.

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого равна , а направление совпадает с осью, вокруг которой производится поворот. Направление поворота и изображающего его отрезка связано правилом правого винта.

В математике показывается, что очень малые повороты можно рассматривать как векторы, обозначаемые символами или . Направление вектора поворота связывается с направлением вращения тела; - вектор элементарного поворота тела, является псевдовектором, так как не имеет точки приложения.

ППолотно 42 ри вращательном движении твердого тела каждая точка движется по окружности, центр которой лежит на общей оси вращения. При этом радиус-вектор R, направленный от оси вращения к точке, поворачивается за время t на некоторый угол . Для характеристики вращательного движения вводится угловая скорость и угловое ускорение.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Направление угловой скорости задается правилом правого винта: вектор угловой скорости сонаправлен с , то есть с поступательным движением винта, головка которого вращается в направлении движения точки по окружности.

Линейная скорость точки связана с угловой скоростью:

.

В векторной форме .

Если в процессе вращения угловая скорость изменяется, то возникает угловое ускорение.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени:

Вектор угловой скорости сонаправлен с вектором элементарного изменения угловой скорости , происшедшего за время dt.

При ускоренном движении вектор сонаправлен , при замедленном – противонаправлен.

Полотно 24 Полотно 12

Связь между линейными и угловыми величинами:

Типы вращательного движения.

а) переменное – вращательное движение, при котором изменяются и :

б) равнопеременное – вращательное движение с постоянным угловым ускорением:

.

в) равномерное – вращательное движение с постоянной угловой скоростью:

.

Равномерное вращательное движение можно характеризовать периодом и частотой вращения .

Период – это время, за которое тело совершает один полный оборот.

, [T] = c.

Частота вращения – это число оборотов, совершаемых за единицу времени.

, [] = c-1.

За один оборот: ,

, .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]