
- •1.Аналитические выражения для вах р-n-переходов
- •2.Входное сопротивление, коэффициент усиления по току, коэффициент усиления по напряжению, коэффициент усиления по мощности биполярного транзистора на низкой частоте в схеме с общей базой
- •3.Лавинный пробой электронно-дырочного перехода. Тепловой пробой.
- •4.Физические эквивалентные схемы бт
- •Физическая эквивалентная схема бт для малого сигнала в схеме с об
- •5.Составляющие прямого и обратного тока p-n перехода.
- •6.Полевые транзисторы
- •Полевые транзисторы
- •7.Эффект оттеснения тока эмиттера на край эмиттера.
- •8.Параметры моп - транзистора. (Статические параметры; Дифференциальные параметры; Электрофизические параметры (подвижность и механизмы рассеяния носителей в канале).
- •9. Статические вах биполярного транзистора.
- •10 Резкий несимметричный электронно-дырочный переход в состоянии теплового равновесия
- •11 Статические вольт-амперные характеристики биполярного транзистора в схеме с общим эмиттером
- •12.Высота потенциального барьера (q ). Зависимость q от температуры (т), концентрации примеси (n) и ширины запрещённой зоны
- •13. Электрические зонные диаграммы, поясняющие случаи обогащения, обеднения слабой и сильной инверсии моп структур.
- •14 Граничная концентрация неосновных носителей заряда в базе электронно-дырочного перехода
- •15. Переходные процессы в диоде:
- •16. Величина порогового напряжения моп-транзистора, и пути его регулирования:
- •17. Туннельный пробой диода. Сравнительный анализ туннельного и лавинного пробоя:
- •18.Частотные свойства бт
- •19.Эффект Эрли и его следствия
- •21.Импульсные свойства биполярного транзистора: случай малого и большого сигналов.
- •Импульсные свойства бт при малом сигнале
- •Импульсный режим работы бт при большом сигнале
- •22.Модель Эберса-Молла.
- •23.Реальные моп-структуры с n и p подложками. Энергетические зонные диаграммы, разности работ выхода металл – затвора – полупроводник (моп структур) с Al и поликремниевым затворами
- •24. Барьерная ёмкость диода
- •25. Электронно-дырочный переход при нарушении теплового равновесия. Токи инжекции и экстракции
- •26. Генерация и рекомбинация носителей в - -переходе
- •27. Коэффициент передачи тока эмиттера идеализированной модели биполярного транзистора.
- •Виды пробоя биполярного транзистора (смыкание эмиттерного и коллекторного перехода, лавинный пробой, вторичный пробой)
- •База отключена
- •Диффузионная ёмкость диода
- •Барьер Шотки. Диод Шотки. Транзистор Шотки Барьер Шоттки
- •Диод Шоттки
- •Вопрос 31. Распределение концентрации неосновных носителей в базе(случай тонкой базы).
- •Вопрос 32. Аналитические выражения вах электронно-дырочного перехода(случай тонкой базы).
- •Вопрос 33. Распределение потоков носителей в реальной одномерной бт
- •34. Особенности работы p-n перехода при высоком уровне инжекции вуи
- •35. Биполярные транзисторы
- •36. Образование электронно-дырочного (р-n) перехода
- •37. Зависимость коэффициентов передачи тока от тока эмиттера
- •38. Распределение концентрации неосновных носителей в базе (общий случай)
- •40.Входное сопротивление, коэффициент усиления по току, коэффициент усиления по напряжению, коэффициент усиления по мощности биполярного транзистора на низкой частоте в схеме с общим коллектором
- •41 Характеристические частоты биполярного транзистора
27. Коэффициент передачи тока эмиттера идеализированной модели биполярного транзистора.
И
деализация
модели БТ состоит в игнорировании
процессов, происходящих в ОПЗ эмиттерного
и коллекторного переходов (т.е. считаемых
бесконечно тонкими), а также токов,
текущих параллельно переходам.
Одномерное представление активной области
п
ланарно-эпитаксиального
транзистора
Коэффициент передачи постоянного тока БТ, включенного по схеме с ОБ (коэффициент передачи тока эмиттера), который работает в активном нормальном режиме:
,
где
— эффективность эмиттера, которая
отражает тот факт, что при прямом смещении
эмиттерного перехода наряду с инжекцией
электронов из эмиттера в базу существует
и инжекция дырок из базы в эмиттер;
— коэффициент
переноса носителей через базу, который
не позволяет игнорировать рекомбинацию
электронов в базе;
— коэффициент
умножения коллектора, который для
активного режима БТ близок к единице
(учитывается только при пробое). Получаем:
.
Виды пробоя биполярного транзистора (смыкание эмиттерного и коллекторного перехода, лавинный пробой, вторичный пробой)
Пробой биполярного транзистора, если не учитывать резко встречающийся пробой эмиттерного р-n перехода, можно охарактеризовать тремя физическими механизмами:
- смыкание коллекторного и эмиттерного р-n переходов;
- лавинный пробой коллекторного р-n перехода,
- вторичный пробой.
Первый вид пробоя – смыкание коллекторного и эмиттерного р-n переходов обусловлен эффектом Эрли, то есть расширением ОПЗ коллекторного р-n перехода при увеличении коллекторного напряжения. Если база высокоомна, то ОПЗ коллектора расширяется в основном в сторону базы и если база очень тонкая (десятые доли микрона, что характерно для СВЧ транзисторов) при определенном напряжении на коллекторе может наступить момент когда ОПЗ коллекторного перехода сомкнется с ОПЗ эмиттерного перехода (рис. 3 .18).
Рисунок 3.18– Рисунок, поясняющий механизм смыкания эмитерного и коллекторного переходов
В схеме ОБ,
,
и
то
.
Таким образом, в схеме ОБ при
коэффициент передачи постоянного
эмиттерного тока равен единице. В схеме
ОЭ
.
Следовательно, в схеме ОЭ в этом случае коэффициент передачи тока базы стремится к бесконечности.
В предположении
резкого коллекторного р-n перехода при
,
ширина ОПЗ определяется как
При , для n+p+ транзистора.
.
Величины напряжений лавинного пробоя(основной вид пробоя) транзисторов, построенных по схемам ОБ и ОЭ, отличаются во много раз, что определяется механизмом стока дырок (случай n-р-n-транзистора), попадающих в область базы при лавинном умножении носителей в коллекторном р-n-переходе. Рассмотрим два крайних случая подключения электродов БТ для величин пробивных напряжений. Если база заземлена, а эмиттер отключен, то лавинный процесс в коллекторном переходе полностью определяется процессами, происходящими в отдельном р-n-переходе, а величина напряжения определяется как напряжение лавинного пробоя отдельно взятого р-n-перехода.
UКБО – самое большое напряжение
IКБО – самый маленький ток
Uпр = 60
ОБ
Происходит акт ударной ионизации, появляется электрон и дырка.
UКБпр стало называться UКБО – напряжение коллектор-база при отключенном эмиттере.