
- •Классификация ручных машин и их индексация
- •Основные требования к ручным машинам
- •Ручные машины для преобразования отверстий.
- •Ручные перфораторы.
- •Электромеханические перфораторы.
- •Ручные машины для разрушения покрытий и уплотнения грунта
- •Ручные машины для шлифования, резки, распиловки и строжки материалов.
- •Перспективы применения и основные направления развития ручных машин
Ручные перфораторы.
Они используются главным образом для образования отверстий различных диаметров и глубины в материалах различной крепости. Наряду с этим некоторые модели могут использоваться для работы в режиме молотка и сверлильной машины. Такая универсальность использования определяет весьма высокий спрос и эффективность применения перфораторов. В соответствии с принятой классификацией перфораторы являются им-пульсно-силовыми машинами со сложным движением рабочего органа—бура. Принцип работы перфоратора обусловлен наличием двух механизмов—ударного и механизма вращения, которые и обеспечивают сложное движение рабочего органа. В некоторых конструкциях перфораторов эти механизмы совмещены. Подводимая к рабочему органу энергия преобразуется в ударные импульсы. За весьма малый промежуток времени, соответствующий времени удара, рабочий орган получает
огромную силу, позволяющую ему преодолеть предел упругости или прочности обрабатываемого материала. Основными параметрами перфораторов являются энергия и частота ударов.
По назначению перфораторы подразделяют на машины для образования неглубоких отверстий {300...500 мм) в материалах с относительно высокой прочностью (40...50 МПа) и мощные машины для образования глубоких отверстий (2000... 4000 мм и более) в материалах практически любой прочности (200 МПа и более).
По типу привода перфораторы подразделяются на машины с электрическим (электромагнитным и электромеханическим), пневматическим приводом и от двигателя внутреннего сгорания.
Электромеханические перфораторы.
Электроперфораторы с энергией удара до 10 Дж имеют массу не более 16 кг и используются при работе во всех направлениях, а большей массы— при работе сверху вниз. Электроперфораторы с энергией удара до 10 Дж подключают к однофазной сети переменного тока нормальной частоты напряжением 220 В, но они могут работать и от трехфазной сети. В первом случае в качестве привода перфораторов используются коллекторные двигатели с двойной изоляцией, во втором — асинхронные с коротко-замкнутым ротором, при этом для обеспечения безопасности перфораторы снабжаются защитноотключающим устройством. С помощью электроперфораторов с энергией удара до 10 Дж получают отверстия диаметром 5...80 мм и глубиной 600...700 мм и более в бетоне, кирпичной кладке и других строительных материалах, а также производят и другие виды работ. Электроперфораторы с энергией удара более 10 Дж имеют массу 30...35 кг. Без специальных устройств ими работают, как правило, сверху вниз, получаю-] в крепких породах отверстия диаметром 32...60 мм значительной глубины (до 6 м). Эти машины имеют асинхронный двигатель. Ввиду удобства эксплуатации и универсальности электрические ручные перфораторы получили широкое распространение. Существует мнение, что пневматические перфораторы целесообразно использовать только при наличии централизованной подачи сжатого воздуха или в специальных условиях, где использование электродвигателей исключено. Промышленностью выпускается весьма широкая номенклатура электроперфораторон с энергией удара 1...25 Дж с разным типом привода, различными конструктивными решениями ударного и поворотного механизмов, рабочего инструмента, системы удаления шлама из шпура и т. д.Механизмы вращения бура в перфораторах бывают кинематические и динамические. Конструкции кинематических поворотных механизмов обеспечивают как непрерывное, так и периодическое вращение бура, при котором за каждый удар бойка бур постоянно поворачивается на некоторую часть окружности. При непрерывном вращении бура разрушение породы происходит как в результате ударов, так и резания, при периодическом — в основном за счет ударов, так кик в результате поворота бура происходит только размельчение породы.
Кинематические поворотные механизмы работают в спокойных условиях и не воспринимают ударных нагрузок. Однако вследствие жесткой связи с приводом при заклинивании бура в породе на корпусе перфоратора создается крутящий момент, который воспринимается руками оператора и может принести к травме. Поэтому в этих механизмах устанавливаются шариковые и дисковые муфты, ограничивающие крутящий момент, передаваемый буру в безопасных для оператора пределах. Передача момента от двигателя к буру в кинематических поворотных механизмах производится через различные кинематические связи. В перфораторах с непрерывным вращением бура этими связями являются цилиндрические и конические шестерни. В перфораторах с периодическим вращением бура кинематическими связями являются тяги, валики, детали ударных механизмов (цилиндры, бойки) и т. д. В динамических поворотных механизмах для вращения бура используется часть кинетической энергии движущегося бойка, который кроме прямого удара по буру наносит косой удар по детали, поворачивающей бур на некоторую часть окружности. В этой механизме нет жесткой связи с приводом, поэтому на корпусе не возникает крутящий момент. При заклинивании бура в породе большая часть кинетической энергии бойка идет на поворот бура и меньшая - на внедрение его в породу, что уменьшает возможность дальнейшего заклинивания бура.
Электромагнитные перфораторы.
Электромагнитные перфораторы являются универсальными машинами и могут работать в чисто ударном, ударно-поворотном и вращательном режимах. Они состоят из двух узлов — электромагнитного ударного узла со свободным выбегом бойка и механизма вращения рабочего инструмента, включающего электродвигатель и редуктор. Принцип работы ударного узла электромагнитного перфоратора основан па непосредственном преобразовании электрической энергии в кинетическую энергию прямолинейного движении бойка. Характерной особенностью таких машин является прерывное преобразование электрической энергии R кинетическую энергию бойка и наличие рабочего а холостого (обратного) хода за время одного рабочего цикла. Ударный узел состоит из катушек (соленоидов), стального бойка, переметаемого во втулке за счет электромагнитных сил при попеременном питании током катушек. При рабочем ходе боек наносит удар по .хвостовику рабочего органа, а при обратном (холостом) ударяется в подпружиненный буфер, защищающий корпус перфоратора от вибрации. Механизм вращения рабочего инструмента отличается от механизма вращения электромеханического перфоратора наличием самостоятельного электродвигателя с редуктором.
Пневматические перфораторы.
В ударных механизмах пневматических перфораторов боек совершает возвратно-поступательное движение, нанося в конце рабочего ходя удар по хвостовику рабочего органа. Для вращения бура применяется динамический поворотный механизм с использованием части кинетической энергии движущегося бойка. В пневматических перфораторах имеются пусковое и воздухораспределительное устройства, обеспечивающие пуск, работу и автоматический переход на холостой ход.
Рабочие инструменты.
Они предназначены для выполнения большого числа операций при промышленном н бытовом применении универсальных перфораторов и имеют такие исполнения и сопряжения с механизмом, при которых электроперфоратор автоматически настраивается на режим, соответствующий назначению инструмента. Поэтому универсальный электроперфоратор не осложняется различными переключающими устройствами, что существенно упрощает эксплуатацию, позволяет быстро овладевать машиной, обеспечивает высокопроизводительную работу оператора.
Использование соответствующих рабочих инструментов дает возможность выполнения различных операций по рубке и долблению дерева, клепке заклепок и рубке листового металла. При сверлении отверстий в кирпиче, камне и бетоне основным рабочим органом перфоратора является бур, представляющий собой стальной стержень, состоящий из коронки, штанги, буртика и хвостовика.
Буры.
Буры бывают сплошные и составные. У сплошных буров конец штанги закален или армирован твердым сплавом, у составных — на конце бура закрепляется съемная коронка. Штанги и коронки изготовляются из различных сталей, соответствующих требуемым режимам работы. Штанга бура соединяется с коронкой с помощью резьбы или самотормозящего клина в виде конического отверстия с углом наклона 3°30' в коронке и гладкого конуса с таким же углом наклона на штанге. В штангах, используемых при бурении с промывкой или продувкой, имеется сквозной канал для подачи воды или воздуха.
Ручные машины для крепления изделий и сборки конструкций
Монтаж металлоконструкций, электромонтажные и сантехнические работы, крепление различного оборудования к фундаментам, сборка столярных изделий осуществляется различными резьбовыми соединениями. Эти работы весьма трудоемки, так как они рассредоточены и выполняются в стесненных и труднодоступных местах. Основными операциями при сборке являются завертывание гаек или болтов, затяжка и ее контроль. Иногда возникает необходимость в изготовлении отверстий и снятии фасок с последующим нарезанием резьбы и сборкой соединения.
Резьбонарезные машины.
Они предназначены для нарезания резьбы в сквозных и глухих отверстиях при выполнении строительно-монтажных работ, выпускаются с электрическим и пневматическим ротационным двигателем и отличаются от сверлильных наличием устройства для реверсирования шпинделя. На шпинделе машины закреплен патрон, имеющий хвостовик квадратного сечения и предназначенный для крепления метчика. На валу двигателя находится солнечная шестерня планетарного редуктора. Сателлиты находятся в зацеплении с двумя венцовымн шестернями — неподвижной и вращающейся , жестко связанной с кулачковой полумуфтой и венцовой шестерней второго планетарного редуктора. Сателлиты этого редуктора закреплены на неподвижных осях, а солнечная шестерня является кулачковой полумуфтой, сквозь которую проходит шпиндель машины с кулачковой лолумуфтой в на его конце.
Ручные резьбозавертывающие машины — гайко, шурупо и шпильковерты. Их применяют при сборке резьбовых соединений. Они могут быть непрерывно-силовыми и импульсно-силовыми с вращательным движением рабочего органа и приводом от электрического, пневматического и гидравлического двигателей. В непрерывно-с иловых резъбозавертывающих ручных машинах вращение от двигателя непрерывно передается рабочему органу — отвертке или ключу через кулачковую муфту и редуктор. В нерабочем положении кулачки ведомой и ведущей полумуфт между собой не связаны. При осевом нажатин на машину кулачки полумуфт входят в зацепление и рабочий орган (головка ключа или отвертка) начинает вращаться вместе со шпинделем. Как только величина крутящего момента на шпинделе превысит некоторую величину, между полумуфтами возникает осевое усилие, которое преодолевает сопротивление пружины и автоматически выводит ведомую полумуфту из зацепления. Возникающий при этом реактивный момент на корпусе машины воспринимается руками оператора. Так как ведущая полумуфта продолжает вращаться, то при одновременном нанесении ударов по кулачкам ведомой полумуфты создается дополнительный момент на шпинделе и одновременно защищается двигатель от перегрузки. Эти ручные машины выпускаются с электрическими и пневматическими двигателями для резьб диаметром до 12 мм, они реверсивны и ими можно выполнять как сборку, так и разборку резьбовых соединений.
В импульсно - с иловых ручных машинах вращение от двигателя передается на рабочий орган (ключ) через редуктор и ударно-импульсный механизм, преобразующий непрерывное вращение в ударные импульсы. На практике еще встречаются случаи, когда при сборке резьбового соединения вручную для достижения значительного момента наносят удары по концу ключа. Таким же образом в ударно-нмпульсном ручном гайковерте реализуются значительные моменты затяжки при одинаковых с резьбозавертывающими машинами непрерывно-силового действия параметрах двигателя. При этом полностью исключается передача реактивного момента на корпус машины и, следовательно, на руки оператора.
Частоударные гайковерты. Весь процесс сборки резьбового соединения такими гайковертами осуществляется за 100...200 ударов в течение 4...5 с. Основными параметрами являются максимальный диаметр затягиваемой резьбы я момент затяжки. Для ограничения момента затяжки применяют муфты предельного момента или ограничивают время действия ударного механизма. Однако это не обеспечивает необходимой точности параметров затяжки резьбового соединения, вследствие чего частоударные гайковерты применяются только для сборки неответственных резьбовых соединений.
Редкоударные гайковерты. Характерной особенностью таких машин являются высокая энергия удара и малая их частота. Они осуществляют процесс затяжки за 2...3 удара, требуют меньшей мощности двигателя и имеют меньшую массу. Принцип работы редкоударного гайковерта заключается в том, что после разгона ударно-вращательного механизма до расчетной угловой скорости, с помощью синхронизирующего устройства происходит освобождение ударника и его ввод в меж кулачковое пространство шпинделя. После ударного взаимодействия ударника и шпинделя происходит резкое падение угловой скорости ударника и его возврат в исходное положение под действием пружины. Принцип действия гайковерта заключается в следующем. При нажатии на курок пускового устройства сжатый воздух поступает в камеры пневматического двигателя и, преодолевая момент сил сопротивления, приводит его во вращение в направлении, соответствующем положению реверса. Вместе с валом ротора пневматического двигателя во вращение приводятся ведомая и ведущая части ударно-вращательного механизма и устройство синхронизации. По достижения расчетной угловой скорости грузы под действием центробежной силы, преодолевая усилие пружины, перемешают ведомую часть ударно-вращательного механизма (ударник) в осевом направлении, обеспечивая контакт с синхронизирующей втулкой. При дальнейшем увеличении угловой скорости ударник совместно с синхронизирующей втулкой, преодолевая усилие пружины, продолжает осевое перемещение в сторону шпинделя.
При достижении определенного взаимного расположения кулачков шпинделя н ударника происходит угловой поворот синхронизирующей втулки относительно оси, перпендикулярной оси вращения ротора. Синхронизирующая втулка освобождает ударник от действия пружины, н кулачки последнего входят в межкулачковое пространство шпинделя. Если значение момента сил сопротивления на шпинделе мало, то крутящий момент пневматического двигателя через замкнутые кулачковые пары передается на шпиндель и производит его вращение. В случае, если же момент сил сопротивления на шпинделе превысит некоторое значение, достаточное для преодоления осевой составляющей центробежных сил, пружина возвращает ударник в исходное положение, размыкая кулачки ударника и шпинделя. Далее рабочий цикл повторяется. Промышленность выпускает ред-коударные пневматические гайковерты с энергей удара от 25 до 160 Дж, с частотой ударов 2...5 Гц, для резьб диаметром 22...52 мм и обеспечивающие получение тарированного момента затяжки 400...5000 Н-м за 3...8 с
Гайковерты с гидравлическим приводом.
Такие гайковерты используют при выполнении монтажных работ, связанных со сборкой и установкой на фундаменты машин и крупного оборудования, где диаметры резьбовых соединений находятся ъ пределах 100...200 мм. Эти гайковерты обеспечивают получение крутящего момента 200...20 000 Н-м. Их питание осуществляется от гидравлического привода, состоящего из насоса и маслонапорного цилиндра с предохранительным клапаном. Один такой привод может обеспечить одновременную работу нескольких гайковертов.