
- •4. Бинарные соединения водорода. Приведите примеры кислотных, основных и амфотерных гидридов. Продемонстрируйте их свойства на примере реакций с водой.
- •6. Соединения галогенов с металлами (ионные и ковалентные) и неметаллами, в частности, с углеродом (пвх. Фотопласты)
- •7. Хлор. Строение атома, получение и применение хлора. Химические свойства хлора. Хлороводород, хлориды. Хлориды в природе.
- •8. Общая характеристика элементов via группы. Положение в Периодической системе, строение и
- •9. Кислород. Нахождение в природе, получение и применение. Озон. Озоновый щит.
- •10. Оксиды неметаллов. Классификация. Получение и применение.
- •11. Оксиды металлов. Кислотно-основные свойства. Получение и применение.
- •12. Физические (агрегатное состояние) и химические свойства высших оксидов элементов 2 периода и 3 периода.
- •13. Пероксиды. Кислотные и редокс свойства, получение и применение пероксида водорода. Взаимодействие пероксидов н надпероксидов с углекислым газом.
- •14. Сера. Получение, свойства и применение серы. Природные источники. Сероводород. Кислотно-основные и окислительно-восстановительные свойства сероводорода. Сера в природе. Получение Серы.
- •15.Сульфиды металлов. Распространение в природе. Получение сульфидов. Растворимость в воде и кислотах на примере сульфидов натрия и меди II.
- •16. Кислотные и окислительно-восстановительные свойства, получение и применение серной и сернистой кислот и их солей (по 1 примеру). «Кислотные дожди»
- •18. Строение молекулы, физические и химические свойства, получение и применение аммиака. Свойства гидроксида и солей аммония.
- •19. Оксиды азота. Получение и свойства, образование в атмосфере и экологическая роль оксидов азота (II) и (IV)
- •21. Нитраты. Нахождение в и роль нитратов в природе. Получение, свойства, термическая устойчивость.
- •22. Фосфаты в природе. Получение и свойства фосфорной кислоты.
- •23. Общая характеристика элементов ivа группы, положение в Периодической системе, строение и
- •24. Углерод в природе. Аллотропия. Окислительно-восстановительные характеристики. Получение и применение разных аллотропных модификаций.
- •26. Углеводороды.
- •27. Карбонаты. Получение и применение оксида углерода (IV). Сода. Карбонатная буферная система. «Парниковый эффект».
- •28. Кремний.
24. Углерод в природе. Аллотропия. Окислительно-восстановительные характеристики. Получение и применение разных аллотропных модификаций.
Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и 13С (1,108 %).
Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применяться графит для изготовления тиглей и карандашей.
Среднее содержание углерода в земной коре 2,3*10-2 % по массе (1*10 –2 в ультраосновных, 1*10 –2 в основных, 2*10 –2 в средних, 3*10 –2 в кислых горных породах). Углерода накапливается в верхней части земной коры (биосфере): в живом веществе 18 % углерода, в древесине 50 %, в каменном угле 80 %, в нефти 85 %, антраците 96 %. Значит часть углерода литосферы сосредоточена в известняках и доломитах.
Число собственных минералов углерода - 112; исключительно велико число органических соединений углерода - углеводородов и их производных.
По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает углерод из недр (уголь, нефть, природный газ), т.к. эти ископаемые — основные источники энергии.
Углерод широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода
Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.
Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.
тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp³-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.
тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.
Основные и хорошо изученные кристаллические модификации углерода — алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается за секунды. ΔН0 перехода — 1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3 780 K. Жидкий углерод существует только при определенном внешнем давлении. Тройные точки: графит-жидкость-пар Т = 4130 K, р = 12,5 ГПа. Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа.
При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20 % выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок. 1 200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решеткой типа вюрцита — лонсдейлит (а = 0,252 нм, с = 0,412 нм, пространственная группа Р63/ттс), плотность 3,51 г/см³, т. е. такая же, как у алмаза. Лонсдейлит найден также в метеоритах.
Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (—C≡C—), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или ССl4 в низкотемпературной плазме.
При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—500 °C, 600—700 °C и 850—1000 °C.
Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.
Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод — основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.
Углерод в виде ископаемого топлива: угля и углеводородов(нефть, природный газ) — один из важнейших источников энергии для человечества.
Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.
Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях.