
- •1. Понятие компьютерной системы, масштабы компьютерных систем
- •2. Назначение компьютерных систем и профилирование по классам задач
- •3. Шинная архитектура микропроцессорных систем
- •4. Режимы работы микропроцессорной системы
- •5. Понятие прерывания и их обработка
- •6. Управление вводом-выводом
- •7. Драйверы устройств
- •8. Стационарные вычислительные системы
- •9. Мобильные и портативные вычислительные системы
- •10. Бездисковые станции и рекламные планшеты
- •11. Банкоматы, инфокиоски и фотокиоски
- •12. Использование гибридных телефонно-вычислительных устройств
- •13. Различные определения ос
- •14. Функций ос
- •15. Категории пользователей ос
- •16. Логические уровни общения «человек – эвм»
- •17. Мультипрограммный режим работы ос
- •18. Описание различных режимов работы ос
- •19. Однозадачные и многозадачные операционные системы
- •20. Однопользовательские и многопользовательские операционные системы
- •21. Основные характеристики и особенности работы ос ms-dos и управление памятью в ms-dos
- •22. Описание особенностей работы ос Windows
- •23. Ос семейства Unix и их особенности работы
- •24. Понятие интерфейса и его основные виды
- •25. Пакетный режим работы ос
- •26. Командный интерфейс и порядок его работы
- •27. Описание простого графического интерфейса
- •28. Описание wimp интерфейса
- •29. Описание silk интерфейса и необходимое оборудование для его реализации
- •30. Описание тактильного (touch) интерфейса и необходимое оборудование для его реализации
- •31. Описание мимического и семантического интерфейсов и необходимое оборудование для их реализации
- •32. Программные оболочки мобильных устройств различных производителей и их интерфейс доступа
- •33. Командный режим ос Linux
- •34. Виды мобильных устройств и типы их интерфейсов
- •35. Понятие процесса и операции над процессами
- •36. Алгоритмы планирования процессов
- •37. Вытесняющие и невытесняющие алгоритмы планирования
- •38. Методы решения проблемы синхронизации
- •39. Понятие нити и основные отличия от процесса
- •40. Контекст и дескриптор процесса
- •41. Классификация методов распределения памяти
- •42. Распределение памяти фиксированными разделами
- •43. Распределение памяти разделами переменной величины (динамически)
- •44. Распределение памяти перемещаемыми разделами
- •45. Страничное распределение памяти
- •46. Сегментное распределение памяти
- •47. Странично-сегментное распределение памяти
- •48. Борьба с фрагментацией памяти
- •49. Управление программными ресурсами
- •50. Концепция виртуальной машины
- •51. Концепция виртуального ресурса
- •52. Классификация систем управления образами виртуальных машин
- •53. Управление ресурсами оборудования в виртуальных образах ос
- •54. Способы и цели объединения компьютерных сетей и систем
- •55. Понятие информационного потока в компьютерной сети
- •56. Выбор эффективной версии межсетевого экрана для реализации информационной защиты
- •57. Организация взаимодействия сетей посредством услуг провайдера
- •58. Обмен данными мобильных устройств с пк
- •59. Способы обеспечения безопасности данных
- •60. Защита межсетевого трафика, назначение межсетевых экранов
- •61. Применение фильтров доступа к внешним сетевым ресурсам
- •62. Использование Proxy-серверов
- •63. Файловая система и примеры распространенных файловых си-стем
- •64. Имена файлов в различных файловых системах
- •65. Атрибуты файлов и права доступа к файлу
- •66. Файловые системы ос семейства Unix
- •67. Особенности работы файловой системы ntfs
- •68. Настройка файла autoexec.Bat и config.Sys в ос ms-dos
- •69. Автоматическое обслуживание настроек ос
- •70. Антивирусная профилактика средств мобильной связи
- •71. Понятие групповой политики в сетях Microsoft
- •72. Типы ос, поддерживающие удаленное управление по
37. Вытесняющие и невытесняющие алгоритмы планирования
Алгоритмы планирования можно разделить на два класса: вытесняющие и не вытесняющие алгоритмы.
Не вытесняющие алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по собственной инициативе, не отдаст управление ОС для того, чтобы та выбрала из очереди другой готовый к выполнению поток.
Вытесняющие алгоритмы - это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого принимается ОС, а не активной задачей.
Основным различием между вытесняющими и невытесняющими алгоритмами является степень централизации механизма планирования потоков. При вытесняющем мультипрограммировании функции планирования потоков целиком сосредоточены в ОС и программист пишет свое приложение, не заботясь о том, как оно будет выполняться параллельно с другими задачами.
При этом ОС выполняет следующие функции:
– определяет момент снятия с выполнения активного потока;
– запоминает его контекст;
– выбирает из очереди готовых к выполнению потоков следующий;
– запускает новый поток на выполнение, загружая его контекст.
При не вытесняющем мультипрограммировании механизм планирования распределен между ОС и прикладными программами. Прикладная программа, получив управление от ОС, сама определяет момент завершения очередного цикла своего выполнения и только затем передает управление ОС. ОС формирует очереди потоков и выбирает в соответствии с некоторым правилом следующий поток на выполнение. Такой механизм создает проблемы как для пользователей, так и для разработчиков приложений. Для пользователей это означает, что управление системой теряется на произвольный период времени, который определяется приложением. Если приложение тратит слишком много времени на выполнение какой-либо работы, пользователь не может переключиться на другую задачу, например, на текстовый редактор, в то время как форматирование продолжалось бы в фоновом режиме.
38. Методы решения проблемы синхронизации
Основная проблема в транспортных сетях нового поколения - то, что технология Ethernet изначально проектировалась для локальных вычислительных сетей и никогда не была предназначена для передачи сигналов синхронизации. Методы линейного кодирования информации на физическом уровне выбирались в соответствии с задачами, которые не предполагали передавать синхросигнал. В сетях SDH изначально использовались линейные коды NRZ, которые приспособлены для передачи синхронизации на физическом уровне канала связи. Но даже эта надежная и хорошо себя зарекомендовавшая технология не отвечает требованиям современных приложений. При создании технологии Sync Ethernet физический уровень и методы кодирования были заимствованы у технологии SDH, а второго (канального) уровня изменения практически не коснулись. Структура кадров осталась неизменной, за исключением SSM-байта статуса синхронизации. Его значения также были заимствованы в технологии SDH.
В целом принципы синхронизации призваны обеспечить работу цифровых систем сети в единых временных интервалах. Сбои в синхронизации всегда приводили к снижению качества предоставляемых услуг. Одними из методов организации передачи синхронизации в пакетных сетях нового поколения являются: частотная, фазовая и временная. Данная тема актуальна, так как на основе транспортной пакетной сети появляется все больше сервисов, критичных к строгим нормам по синхронизации.
Частотная подразумевает, что у всех элементов сети значащие моменты соответствуют одной и той же средней частоте. В развитие этой идеи можно предположить, что частоты всех сетевых элементов равны в точности до фазы. Это называется фазовой синхронизацией, и добиться ее в жизни обычно сложнее, чем представить. И следующее, еще более строгое требование – привязать фазу к какой-то временной шкале. На практике обычно используют шкалу всемирного координированного времени (UTC), не привязанную к вращению Земли, а соотносящую с атомным стандартом времени.