Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка механическое оборудование.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.45 Mб
Скачать

18. Расчет основных параметров щековой дробилки: кинематика, q, n, α.

Ширина загрузочного отверстия В должна обеспечивать свободный прием кусков максимальной крупности, поэтому должно быть соблюдено условие

Ширина выходной щели b связана с максимальной крупностью кусков в готовом продукте зависимостью

Рис. 3. Схема для определения параметров щековой дробилки:

а – рационального угла захвата; б – частоты вращения эксцентрикового вала; в – производительности.

Для определения высоты рабочей камеры дробилки вычисляют угол  между подвижной и неподвижной дробящими плитами. Этот угол называют углом захвата и должен быть таким, чтобы материал, находящийся между щеками, при сжатии щеками разрушался, а не выталкивался вверх.

Определение угла захвата.

На кусок материала, зажатый между щеками (рис.3), действуют усилия F и равнодействующая этих усилий R, причем

С илы трения, вызванные сжимающими усилиями, равны fF и действуют на кусок материала против направления выталкивающей силы, поэтому при выталкивании куска материала они направлены вниз, где f коэффициент трения скольжения твердой породы по металлу f=0,3. Вертикальная составляющая силы трения Ffcos(a/2) направлена в сторону, противоположную действию сил, выталкивающих кусок из дробилки. Усилие F дробления раскладывается на вертикальную fsin(a/2) и горизонтальную Fcos(a/2) составляющие. Исходя из условия равновесия куска материала в дробилке под действием

или

Из курса теоретической механики известно, что f=tga(здесь a – угол трения), получаем

или

Из формулы следует, что дробление возможно, когда угол захвата равен или меньше двойного угла трения. На практике a принимается равным 18…220.

Определение частоты вращения эксцентрикового вала.

Дробленый материал из рабочей камеры выпадает под действием силы тяжести при отходе щеки в крайнее правое положение. За время отхода подвижной щеки от неподвижной кусок под действием силы тяжести должен успеть опуститься на расстояние h (рис.4) и выйти из камеры дробления, т.е. частота вращения эксцентрикового вала должна быть такой, чтобы время t отхода подвижной щеки из крайнего левого положения в крайнее правое было равно времени, необходимому для прохождения свободно падающим телом h

Ш

Рис. 4. Схема разгрузки щековой дробилки

ирина выходной щели b=e+sм, где е – расстояние между дробящими плитами в момент их максимального сближения; sм – ход подвижной щеки в нижней точке камеры дробления.

Время отхода щеки равно

,

где h – частота вращения эксцентрикового вала, с-1.

Путь h, пройденный телом за время t, может быть определен по формуле

Из рис. 4 следует, что

тогда , откуда

окончательно частота вращения вала

Кроме того, имеются следующие эмпирические зависимости для расчета частоты вращения вала щековых дробилок:

при В  600 мм n = 17 b-0,3

при В  900 мм n = 13 b-0,3, где b в мм.

Производительность щековых дробилок. За один оборот эксцентрикового вала из рабочей камеры выпадает некоторый объем материала V 3), заключенный в призме высотой h (на рис. 4 заштрихованный участок).

Производительность дробилки (м3/с)

,

где – коэффициент, учитывающий разрыхление материала в объеме призмы и равный 0,4…0,45.

Объем призмы ,

где А – площадь трапеции, определяемая

; ,

тогда ,

где L – длина призмы, равная длине камеры дробления.

Окончательно получим объемную производительность

массовая производительность щековой дробилки

,

где – плотность материала, кг/м3.

Мощность электродвигателя рассчитывают по формулам, которые можно разделить на три группы.

Первая группа объединяет эмпирические формулы, предложенные на основе работы щековых дробилок в промышленных условиях. Характерными для этой группы являются формулы Бонвича, рекомендующего определять мощность двигателя (кВт) в зависимости от стадии дробления

;

для дробилок среднего дробления

;

для дробилок мелкого дробления

, где В и L – в см.

Ко второй группе формул относятся аналитические зависимости, включающие значения усилий дробления. К таким формулам относятся, в частности, формула, предложенная проф. В.А. Олевским:

,

где F – среднее равнодействующее усилие дробления, тс;

s – ход сжатия, м;

n – частота вращения вала, с-1;

– механический КПД дробилки.

К третьей категории формул относят зависимости, выведенные на основе одного из энергетических законов дробления.

19. Молотковые и роторные дробилки. Назначение, область применения, классификация, кинематические схемы. Направления совершенствования конструкции. Устройство, принцип действия, конструктивные особенности узлов и деталей. Расчет основных параметров Q, n, α.

Дробилки ударного действия применяют в основном для крупного, среднего и мелкого дробления малоабразивных материалов малой и средней прочности (сж  200 МПа), имеющих небольшую влажность и вязкость. В этих дробилках материал разрушается под действием механического удара, при котором кинетическая энергия движущихся тел полностью или частично переходит в энергию деформации и разрушения.

Дробилки ударного действия отличаются следующими технико-эксплуатационными преимуществами: высокой степенью дробления (до 200), что позволяет сократить число стадий дробления; высокой удельной производительностью (на единицу массы машины); простотой конструкции и удобством обслуживания; более высоким качеством готового продукта по форме зерен.

По конструктивному исполнению основного узла машины – ротора дробилки ударного действия разделяют на молотковые и роторные.

Молотковые дробилки имеют ротор, набранный из отдельных дисков, между которыми шарнирно подвешены молотки массой от 5 до 120 кг. Число рядов молотков достигает 12. В ударе по куску материала участвует масса отдельных молотков.

По количеству роторов дробилки бывают однороторные и двухроторные. По расположению роторов – с роторами, расположенными на одном уровне и роторами, расположенными в разных уровнях.

По направлению вращающихся роторов: непрерывные (вращение в одну сторону), и реверсивные (вращение в обе стороны).

По наличию колосниковой решетки: без колосниковой решетки; с колосниковой решеткой в загрузочной части; с колосниковой решеткой в разгрузочной части; с колосниками в разгрузочной и загрузочной частях.

Кроме этого дробилки различаются конструкции молотков.

Дробилки характеризуются диаметром и длиной ротора, которые входят в их условное обозначение, например М20х20 – молотковая дробилка с диаметром и длиной ротора равным 2000 мм. Окружная скорость ротора достигает 80 м/с.

К конструкции молотков и бил предъявляются следующие требования:

  • способность выдерживать большие ударные нагрузки от центробежных сил;

  • большая износостойкость;

  • возможность многократного использования.

Для дробления мало– и неабразивных материалов применяют молотки колосникового типа (рис. 8, а). Молотки П-образной формы применяют для более прочных материалов, они обеспечивают более высокую степень измельчения и упрощают конструкцию ротора, но при их износе нарушается его балансировка, что усложняет в целом эксплуатацию дробилки (рис. 8, б–в).

а

Рис. 8. Конструкции роторов конусных дробилок

Молотки бандажного типа (рис. 8, г) имеют утолщенный двухсторонний боек, предусматривающий их поворот, что увеличивает срок службы молотков. Они применяются для дробления прочных и абразивных материалов.

Молотки и била изготавливают из высокомарганцовистой стали 110Г13Л. Изготовление молотков из сплава «нихард» снижает их удельный износ более чем в 10 раз, что в целом повышает эксплуатационную привлекательность молотковых дробилок в целом.

Основные типы кинематических схем молотковых дробилок представлены на рис. 9.

Наибольшее распространение в ПСМ получили переверсивные молотковые дробилки с колосниковой решеткой (рис. 9, а–в), применяемые при дроблении пород средней твердости и даже твердых пород.

Однороторные переверсивные и реверсивные дробилки с подвижными колосниковыми решетками применяются для дробления горных пород при наличии в них примесей вязких материалов (рис. 9, г, д, к).

Рис. 9. Кинематические схемы молотковых дробилок

Двухроторная молотковая дробилка с роторами, вращающимися в одну сторону и расположенными в разных уровнях, имеет более высокие производительность и степень измельчения (рис. 9, е), чем однороторные дробилки. При несколько большей степени измельчения и двухроторная дробилка имеет вдвое большую производительность.

На рисунке 9, з–к представлены схемы реверсивных и бесколосниковых дробилок.