
- •Методологические основы моделирования (Миша)
- •Общая классификация основных видов моделирования (Миша)
- •Процедурно-технологическая схема построения и исследования моделей сложных систем (Аня)
- •Отличительные особенности моделей различных классов (Аня)
- •Области применения имитационного моделирования (Люба)
- •Сущность метода имитационного моделирования (Люба)
- •Статическое и динамическое представление моделируемой системы (Виля)
- •Управление модельным временем (Виля)
- •Проблемы стратегического и тактического планирования имитац.Эксп. (Гриша)
- •Общая технологическая схема имитационного моделирования (Гриша)
- •Базовые концепции структуризации и формализации имитационных систем (Леша)
- •Методологические подходы к построению дискретных имитационных моделей (Леша)
- •Язык моделирования gpss (Макс)
- •Сети Петри и их расширения (Макс)
- •Основы технологии имитационного моделирования (Киря)
- •Описание поведения системы (надо убрать воду и проверить формулы) (Киря)
- •Моделирование асинхронных процессов (Даша)
- •Обзор алгоритмов оптимизации (Даша)
- •Глобальная оптимизация (Дима)
- •Классификация алгоритмов оптимизации (Дима)
- •Скорость и точность оптимизации (Антон)
- •Метод Дельфи (Антон)
- •Метод Анализа Иерархий (маи) (Серега)
- •Анкетирование (Серега)
- •Экспертные оценки (Катя)
- •Обработка экспертных оценок (Катя)
- •Метод непосредственного оценивания (Вова)
- •Метод ранжирования (Саша)
- •Основные понятия га (Егор)
- •Стратегии отбора для га (Егор)
- •Модели га (Паша)
- •Применение алгоритмов, инспирированных природными явлениями, для решения задач оптимизации (Паша)
- •Алгоритм имитации отжига (Настя)
- •Алгоритм роя частиц (Настя)
- •Алгоритм муравьиной колонии (Миша)
- •Пчелиные алгоритмы (Люба)
- •Моделирование перемещения бактерий (Виля)
- •Алгоритм культурного обмена (Леша)
- •Алгоритм подъема (Киря)
- •Алгоритм поиска с запретами (Дима)
- •Меметический алгоритм (Антон)
- •Алгоритм поиска гармонии (Серега)
- •Отбор объектов в пространстве признаков. Метод Парето (Катя)
- •Применение интерактивного подхода к решению опт. Задач (Саша)
- •Типовые задачи многокритериальной оптимизации (Паша)
Проблемы стратегического и тактического планирования имитац.Эксп. (Гриша)
Имитационное моделирование — это экспериментальный метод исследования реальной системы по ее имитационной модели. Суть исследования реальной системы по ее имитационной модели состоит в получении (сборе) данных о функционировании системы в результате проведения эксперимента на имитационной модели.
Имитационные модели - это модели прогонного типа, у которых есть вход и выход, т. е. если подать на вход имитационной модели определенные значения параметров (переменных, структурных взаимосвязей), можно получить результат, который действителен только при этих значениях.
1. Имитационная модель дает результаты, которые действительны только для определенных значений параметров, переменных и структурных взаимосвязей, заложенных в имитационную программу. Изменение параметра или взаимосвязи означает, что имитационная программа должна быть запущена вновь. Поэтому для получения необходимой информации или результатов необходимо осуществлять прогон имитационных моделей, а не решать их.
2. Имитационная модель не способна формировать свое собственное решение в том виде, в каком она формируется в аналитических моделях, а может служить в качестве средства для анализа поведения системы в условиях, определяемых экспериментатором.
Эксперимент на модели содержит несколько реализаций, прогонов и предполагает оценивание по данным совокупности (выборки) (для стохастической системы Стохастические системы - системы, динамика которых зависит от случайных факторов, а входные и выходные переменные стохастической модели, как правило, описываются как случайные величины, функции, процессы, последовательности.). В случае детерминированной системы достаточно провести один прогон - по определенным операционным правилам при конкретном наборе параметров.
В имитационном моделировании важным вопросом является не только проведение, но и планирование имитационного эксперимента в соответствии с поставленной целью исследования.
Таким образом, встает проблема организации эксперимента, т. е. выбора метода сбора информации, который дает требуемый (для достижения поставленной цели исследования) ее объем при наименьших затратах. Основная цель - уменьшить временные затраты на эксплуатацию модели, сократить машинное время на имитацию, отражающее затраты ресурса времени ЭВМ на проведение большого количества имитационных прогонов.
Эта проблема получила название стратегического планирования имитационного исследования. Для ее решения используются методы регрессионного анализа, планирования эксперимента и др. Стратегическое планирование - это разработка эффективного плана эксперимента, в результате которого либо выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизирующая или максимизирующая отклик (выход) имитационной модели.
Тактическое планирование, связано с определением способов проведения имитационных прогонов, намеченных планом эксперимента: как провести каждый прогон в рамках составленного плана эксперимента. Здесь определяется длительность прогона, оценивается точность результатов моделирования и др.