
- •1. Теоретические вопросы
- •1.Основные разделы дисциплин, изучаемых в данном курсе ,их краткая характеристика.
- •Предмет «Теоретическая механика».
- •2.Основные вопросы ,рассматриваемые в теоретической механике ,их краткая характеристика.
- •Задачи теоретической механики.
- •3.Статика. Основные определения и аксиомы статики.
- •4.Плоская система сходящихся сил. Графический и аналитический метод.
- •5. Пара сил. Равнодействующая сил. Момент пары. Условие эквивалентности пар
- •6.Плоская система произвольно расположенных сил. Уравнения статики для пространственной и плоской системы сил.
- •Плоская система произвольно расположенных сил.
- •Теорема Пуансо.
- •Приведение к точке плоской системы произвольно расположенных сил.
- •Условие равновесия произвольной плоской системы сил.
- •7. Опорные устройства балочных систем. Классификация нагрузок.
- •Классификация нагрузок.
- •8.Кинематика. Кинематические характеристики простейших видов движений.
- •Основные понятия.
- •Простейшие движения тела.
- •9. Скорости и ускорения точек вращающегося твердого тела
- •10. Способы передачи вращательного движения. Классификация механизмов.
- •Классификация.
- •11. Сложное движение точки.
- •12.Определение опорных реакции для балки нагруженной сосредоточенной силой.
- •13. Определение опорных реакции для балки нагруженной сосредоточенным моментом.
- •22 Основы сопротивления материалов. Метод сечений. Модель деформируемого тела.
- •23.Классификация сил, действующих на элементы конструкций. Примеры.
- •24.Понятие о деформациях и напряжениях. План решения основной задачи сопротивления материалов
- •26. Растяжение – сжатие, вычисление напряжений по площадкам перпендикулярным к оси стержня.
- •1. Вычисление напряжений по площадкам, перпендикулярным к оси стержня
- •27 Деформации при растяжении – сжатии. Закон Гука.
- •28.Диаграммы растяжения. Механические характеристики материалов.
- •35 Деформация изгиба.
- •36 Практический расчет на изгиб валов.
- •37 Основные понятия и определения в теории механизмов и машин.
- •38.Классификация машин и механизмов.
- •40 Структура и классификация кинематических пар.
- •Классификация кинематических пар:
- •2) По относительному движению звеньев, образующих пару:
- •41 Кинематические цепи и их классификация.
- •42) Механизм. Структурна формула механизма
- •44 Лишние степени свободы и пассивные связи.
- •45 Замена высших пар низшими в плоских механизмах.
- •46 Структурная классификация плоских механизмов.
- •47 Структурный анализ механизмов. Цель и задачи структурного анализа.
- •48 Группы Ассура, их классификация.
- •49 Формула строения механизма, его класс и порядок.
- •50 Обзор основных видов механизмов.
- •По характеру очертания профиля кулачка различают:
- •По профилю толкателя различают:
- •51 Задачи и методы кинематического исследования механизмов.
- •52 Определение положений звеньев механизма и построение траекторий точек.
- •53 Определение скоростей и ускорений графо-аналитическим методом. Кривошипно-ползунный механизм.
- •Основные свойства планов скоростей:
- •54 Построение плана скоростей и ускорений для шарнирного четырехзвенника.
- •Основные свойства планов скоростей:
- •71) Основные этапы создания технических устройств
- •1) Разработка технического задания (тз); 2) разработка эскизного проекта; 3) разработка технического проекта; 4) разработка рабочего проекта.
- •72) Материалы деталей обычно выбирают соответственно основному критерию работоспособности (в частности, основному виду нагрузки) и требованиям технологичности и экономики.
- •76) Виды разрушений зубчатых колес
- •77) Проектный расчёт закрытой цилиндрической зубчатой передачи
- •Проверочный расчёт закрытой цилиндрической передачи Проверка контактной выносливости рабочих поверхностей зубьев колёс
- •Проектный расчёт открытой конической прямозубой передачи
- •Проектный расчёт
- •Проверочный расчёт
- •Червячные передачи находят широкое применение, например, в металлорежущих станках, подъемно-транспортном оборудовании, транспортных машинах, а также в приборостроении.
- •81) Цепная передача — это передача механической энергии при помощи гибкого элемента — цепи, за счёт сил зацепления. Может иметь как постоянное, так и переменное передаточное число
- •Классификация подшипников качения
- •Серии подшипников качения и их обозначение
- •Классификация муфт По конструкции:
- •85. Виды сварки
- •87. Шпоночные соединения
- •Виды шпоночных соединений
- •88. Основные виды резьбы.
- •92 Кинематический и силовой расчет цепных передач
- •Преимущества:
- •Недостатки:
1. Теоретические вопросы
1.Основные разделы дисциплин, изучаемых в данном курсе ,их краткая характеристика.
Предмет «Теоретическая механика».
Включает в себя три раздела:
теоретическая механика – изучает основные законы движения твердых тел и их взаимодействия
сопротивление материалов – изучает основы прочности материалов и методы расчетов элементов конструкций на прочность, жесткость и устойчивость под действием внешних сил,
детали машин – изучает основы конструирования и расчета деталей и сборочных единиц общего назначения.
Теорема механизмов машин-
2.Основные вопросы ,рассматриваемые в теоретической механике ,их краткая характеристика.
Задачи теоретической механики.
Теоретическая механика – наука о механическом движении материальных твердых тел и их взаимодействии.
Подразделяется на статику, кинематику и динамику.
Статика – изучает условия относительного равновесия механических систем. Для осуществления равновесия необходимо определенное соотношение сил, поэтому в статике изучаются общие свойства сил, правила замены сил другими силами, эквивалентными с точки зрения равновесия.
Кинематика –изучает механическое движение без учета сил, вызывающих это движение или влияющих на него. Таким образом, устанавливаются некоторые количественные меры движения с чисто геометрической точки зрения.
Динамика – изучает механическое движение в связи с действующими силами на объект движения. Таким образом, изучается связь между движением и действующими силами
Занимается изучением абстрактных моделей тел: материальной точки и абсолютно твердого тела.
3.Статика. Основные определения и аксиомы статики.
Статика – это раздел теоретической механики, в которой изучаются методы эквивалентных преобразований систем сил и устанавливаются условия равновесия сил, приложенных к твердому телу.
При изучении равновесия используют принцип неизменности геометрических форм и размеров твердых тел, поскольку их изменение под действием сил обычно мало по сравнению с первоначальными размерами. Поэтому в статике материальные тела считают абсолютно твердыми.
Понятие «сила» в механике является одним из важнейших. Силой называется векторная величина, являющаяся мерой механического воздействия одного материального тела на другое. Векторная сила характеризуется числовым значением, или модулем, и направлением действия. Единицей измерения силы является 1 ньютон (1Н). Прямая, вдоль которой направлена сила, называется линией действия силы.
Приведем основные определения статики.
Системой сил называется совокупность сил, действующих на твердое тело.
Если систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом механического состояния тела, то такие две системы сил называются эквивалентными.
Система сил, под действием которой свободное тело может находиться в покое, называется уравновешенной, или эквивалентной нулю.
Если система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.
Силы, действующие на данное тело или систему тел, можно разделить на внешние – силы, силы, действующие на данную систему со стороны других тел, не входящих в рассматриваемую систему, и внутренние – силы, с которыми действуют друг на друга тела, входящие в рассматриваемую систему.
Механической системой называется любая совокупность взаимодействующих материальных точек. Статика базируется на основных законах, принимаемых без математических доказательств и называемых аксиомами статики.
Аксиома 1. Если на свободное твердое тело действуют две силы, то тело может находиться в равновесии только тогда, когда эти силы равны по модулю, действуют по одной прямой в противоположные стороны..
Аксиома 2. Действие данной системы сил на абсолютно твердое тело не изменяется, если к ней добавить или от нее отнять уравновешенную систему сил.
Аксиома 3. При всяком действии одного материального тела на другое со стороны другого тела имеется противодействие, такое же по величине, но противоположное по направлению.
Аксиома 4. Две силы, приложенные к твердому телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах как на сторонах.
Аксиома 5. Механическое состояние не изменится, если освободить ее от связей, приложив к точкам системы силы, равные реакциям связей. Эту аксиому называют аксиомой о связях.
Материальные тела, ограничивающие перемещение данного тела в пространстве, называют связями.
Сила, с которой связь действует на тело, препятствуя его перемещениям, называется силой реакцией связи, или просто реакцией связи. Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.