Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_Statistika_1_Razdel.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.31 Mб
Скачать

4.4. Расчет средней величины по результатам группировки. Свойства средней арифметической

Если исходные данные представлены в сгруппированном виде, то средняя величина рассчитывается по обычным формулам средних взвешенных (арифметических либо гармонических). Сложности возникают, когда в сгруппированных данных указываются не конкретные значения признака Х по каждой группе, а лишь интервалы его изменения. Правильный расчет общей средней величины возможен, если каким-либо образом удается установить средние значения признака в каждой группе. Если такие средние в группах определить по имеющимся сведениям нельзя, то их заменяют серединами интервалов, получая в итоге некоторое, чаще всего вполне удовлетворительное, приближение к среднему значению. Таким образом, расчет средней арифметической величины выполняют по формуле

, где .

Расчет среднего значения по данным группировки требует, как всегда, обоснованного выбора взвешивающего показателя. Очень часто необходимые для анализа величины fj – частоты повторения признака Х – в исходных данных либо отсутствуют, либо не столь очевидны.

Рассмотрим пример.

Группы предприятий

Себестоимость одного изделия, руб.

Число предприятий, %

Объем продукции, %

Затраты на производство, %

1

110 – 115

8

9

8,2

2

115 – 120

16

18

17,2

3

120 – 125

24

24

23,9

4

125 и выше

52

49

50,7

Итого

-

100

100

100

Если с определением середин интервалов никаких сложностей не возникает (112,5; 117,5; 122,5; 127,5), то при назначении взвешивающего показателя ошибкой может быть выбор признака “Число предприятий”, когда в процессе анализа рассматривается общая сумма затрат на производство. Умножение величины себестоимости одного изделия на число предприятий весьма косвенно характеризует общую сумму затрат на производство. Точную экономическую величину – оценку общих затрат на производство данной продукции получаем умножением себестоимости одного изделия на объем продукции. Таким образом, если использовать формулу средней арифметической, то в качестве взвешивающего показателя следует выбрать показатель объема продукции или его процентной доли в совокупном объеме производства. Тогда средняя себестоимость изделия будет равна

Такое же значение средней себестоимости в данном примере можно получить и по формуле средней гармонической, если в качестве взвешивающего признака использовать показатель “Затраты на производство”

Заметим, что исходные данные задачи позволяют определить еще 2 показателя, косвенно характеризующие средний уровень себестоимости. А именно, 123,5 руб. – такая себестоимость единицы продукции приходится на 1% общего числа предприятий и 123,355 руб. – таков средний уровень себестоимости изделия, относящийся к 1 проценту общей суммы затрат.

Для ускорения ручных расчетов полезно знать следующие свойства:

1) величина средней арифметической не изменится, если веса всех вариантов заменить новыми, полученными из начальных умножением или делением на одно и то же число (s); действительно,

2) если все индивидуальные значения признака (т.е. все варианты) увеличить либо уменьшить в одно и то же число раз (или на одно и то же число), то среднее значение получившегося нового признака будет во столько же раз (или на столько же) отличаться от среднего значения исходного показателя. Действительно,

Свойство 1 используется для расчета средней величины через показатели удельного веса (частости). Свойство 2 применяют для ускорения ручных расчетов, особенно если первичные данные представлены в сгруппированном виде. Так, по приведенным данным найдем новую величину X΄, варианты которой определим по формуле –

, ( – середина интервала i).

Тогда . Переходим к средним величинам:

,

Важно правильно выбрать величины А (обычно это середина какого-либо интервала) и h (чаще всего это величина интервала изменения признака в какой-либо группе).

Пусть, например, А = 122,5 и h = 5. Получаем последовательность величин X΄i: -2; -1; 0; 1. Их среднее значение равно = (-2)·0,09 + (-1)·0,18 + 0·0,24 + 1·0,49 = 0,13. Таким образом, = 5·0,13 + 122,5 =123,15 руб.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]