- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
- •2. Явления, подтверждающие сложность строения атома. Элементарный электрический заряд. Открытие электрона.
- •3. Периодическое изменение химических свойств атомов. Периодическая система элементов д.И.Менделеева. Ее значение для химии и физики.
- •5. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Неспособность классической физики объяснить устойчи-вость атома и характер атомных спектров.
- •6. Постулаты Бора. Квантование орбит электрона. Боровская теория водо-родного атома и водородоподобных ионов. Главное квантовое число. Боровский радиус. Опыты Франка и Герца.
- •Атом водорода. Линейчатые спектры
- •8. Гипотеза де-Бройля. Опыты Дэвиссона и Джермера. Дифракция электро-нов, атомов и молекул. Корпускулярно-волновой дуализм. Особенности поведения микрообъектов.
- •9. Статистический смысл волн де-Бройля. Сопряженные переменные. Принцип неопределенности Гейзенберга. Оценка размера и минимальной энергии атома на основе соотношения неопределенности.
- •10. Волновая функция (пси-функция). Нестационарное и стационарное урав-нения Шредингера. Операторы физических величин. Гамильтониан.
- •11. Условия, накладываемые на волновую функцию. Условие нормировки. Частица в одномерной потенциальной яме. Квантование энергии. Собственные функции. Принцип суперпозиции.
- •12. Прохождение частиц через потенциальный барьер. Коэффициенты отра-жения и прозрачности. Туннельный эффект.
- •13. Гармонический осциллятор. Нулевая энергия гармонического осциллято-ра. Правила отбора.
- •14. Уравнение Шредингера для атома водорода. Разделение переменных. Уровни энергии атома водорода. Волновые функции и распределение плотности вероятности. Момент импульса электрона и его проекции.
- •15. Классификация состояний и спектр атома водорода. Главное, азимуталь-ное и магнитное квантовые числа. Правила отбора. Вырождение энергетических уровней (кратность вырождения).
- •16. Сложение моментов импульса в квантовой механике. Спин электрона. Спин-орбитальное взаимодействие и тонкая структура спектральных линий.
- •17. Уровни энергии и спектр атома гелия (парагелий, ортогелий).
- •18. Спектры щелочных металлов. Снятие вырождения уровней. Термы ще-лочных металлов. Экспериментальная формула Ридберга. Ридберговские поправки.
- •22. Принцип Паули. Электронная конфигурация атома. Типы связей элек-тронов в атоме. Классификация состояний.
- •23. Основное состояние многоэлектронного атома. Правила Хунда. Последо-вательность заполнения электронных оболочек атома.
- •26. Атомы во внешних магнитных полях. Снятие вырождения по mJ . Эффект Зеемана. Эффект Пашена – Бака.
- •27. Электронный парамагнитный резонанс. Радиоспектроскопия. Ядерный магнитный резонанс
- •28. Атомы во внешних электрических полях. Поляризуемость атомов и молекул. Эффект Штарка.
- •30. Поступательное, колебательное и вращательное движения молекул. По-лосатые спектры молекул. Колебательное и вращательное квантовые числа. Прави-ла отбора. Комбинационное рассеяние света.
- •31. Сверхтонкая структура спектральных линий. Состав и характеристики атомных ядер. Размеры атомных ядер. Спин атомного ядра.
- •32. Изотопы, изомеры, изотоны, изобары. Трансурановые элементы.
- •33. Масса и энергия связи ядра. Дефект массы. Удельная энергия связи. Ее зависимость от массового числа.
- •34. Модели атомного ядра. Капельная и оболочечная модели. Магические и дважды магические ядра.
- •35. Сильные взаимодействия. Ядерные силы. Характеристики ядерных сил. Природа ядерных сил.
- •36. Радиоактивность. Естественная и искусственная радиоактивность. Общий закон радиоактивного превращения. Постоянная распада. Период полураспада. Среднее время жизни радиоактивного ядра.
- •37. Альфа-распад радиоактивных ядер. Бета-распад. Спектр бета-частиц. Проблема массы нейтрино. Электронный захват (е-захват).
- •38. Гамма-излучение ядер. Внутренняя конверсия. Спонтанное деление тя-желых ядер. Протонная радиоактивность.
- •39. Активность радиоактивного вещества. Единицы измерения активности. Радиоактивные семейства.
- •40. Ядерные реакции. Энергия реакции. Составное ядро. Время пролета. Эф-фективное сечение реакции.
- •41. Деление атомных ядер под действием нейтронов. Цепная ядерная реак-ция. Критическая масса. Атомная бомба. Ядерный реактор.
- •42. Синтез легких ядер. Термоядерный и инерционный синтез. Проблемы управляемого термоядерного синтеза.
- •49. Систематика элементарных частиц. Кварковая модель адронов. Попытки обнаружения кварков.
- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
5. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Неспособность классической физики объяснить устойчи-вость атома и характер атомных спектров.
Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.
|
Рисунок 6.1.2. Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп |
От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.
|
Рисунок 6.1.3. Рассеяние α-частицы в атоме Томсона (a) и в атоме Резерфорда (b) |
|
Рисунок 6.1.4. Планетарная модель атома Резерфорда. |
Радикальные выводы о строении атома, следовавшие из опытов Резерфорда, заставляли многих ученых сомневаться в их справедливости. Не был исключением и сам Резерфорд, опубликовавший результаты своих исследований только в 1911 г. через два года после выполнения первых экспериментов. Опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны (рис. 6.1.4). Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.
Планетарная модель атома, предложенная Резерфордом, несомненно явилась крупным шагом вперед в развитии знаний о строении атома. Она была совершенно необходимой для объяснения опытов по рассеянию α-частиц, однако оказалась неспособной объяснить сам факт длительного существования атома, т. е. его устойчивость. По законам классической электродинамики, движущийся с ускорением заряд должен излучать электромагнитные волны, уносящие энергию. За короткое время (порядка 10–8 с) все электроны в атоме Резерфорда должны растратить всю свою энергию и упасть на ядро. То, что этого не происходит в устойчивых состояниях атома, показывает, что внутренние процессы в атоме не подчиняются классическим законам.
