Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ядерка шпоры 2014.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.19 Mб
Скачать

38. Гамма-излучение ядер. Внутренняя конверсия. Спонтанное деление тя-желых ядер. Протонная радиоактивность.

Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5·10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.

Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ , хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомны ядер, при ядерных реакциях (например, при аннигиляции электрона и позитрона , распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.

Внутренняя конверсия − явление, при котором энергия γ-перехода ћω из состояния с большей энергией в состояние с меньшей энергией в результате электромагнитного взаимодействия передаётся одному из электронов атомной оболочки, который при этом вылетает из атома (конверсионный электрон). Кинетическая энергия конверсионного электрона Т определяется энергией γ-перехода ћω и энергией связи электрона в атоме Ece

T = ћω - Ece.

Электроны внутренней конверсии могут вылетать из различных оболочек атома: K, L, M и т.д. Чаще всего конверсионные электроны вылетают из ближайшей к ядру K-оболочки. В отличие от β-распада конверсионные электроны имеют дискретный спектр энергии. Коэффициент внутренней конверсии K определяет отношение вероятности внутренней конверсии к вероятности γ-перехода с испусканием γ‑кванта. Коэффициент внутренней конверсии растёт с уменьшением энергии перехода ћω и с увеличением заряда ядра (~Z3). Величина коэффициента внутренней конверсии может меняться в широких пределах от 10-3 до 102-103.

Спонтанное деление тяжелых ядер. В 1940 г. советскими физи­ками Н.Г. Флеровым и К.А. Петржаком был обнаружен процесс самопро­извольного деления ядер урана на две примерно равные части. Впоследствии это явление было наблюдено и для многих других тяже­лых ядер. По своим характерным чертам спонтанное деление близко к вынужденному делению, которое рассматривается в следующем параграфе.

Протонная радиоактивность. Как следует из названия, при про­тонной радиоактивности ядро претерпевает превращение, испуская один или два протона (в последнем случае говорят о двупротонной радиоактивности). Этот вид радиоактивности наблюдался впервые в 1963 г. группой советских физиков, руководимой Г.Н. Флеровым.

39. Активность радиоактивного вещества. Единицы измерения активности. Радиоактивные семейства.

Активность радиоактивного вещества. Активностью радиоактив­ного препарата называется число распадов, происходящих в препара­те за единицу времени. Если за время dt распадается dNрасп ядер, то активность равна dNрасп/dt. Согласно 164

dNрасп = |dN| = λNdt.

Отсюда следует, что активность радиоактивного препарата равна λN, т.е. произведению постоянной распада на количество имеющихся в препарате нераспавшихся ядер.

В международной системе единиц (СИ) единицей активности явля­ется расп/с. Допускается применение внесистемных единиц расп/мин и кюри (Ки). Единица активности, называемая кюри, определяется как активность такого препарата, в котором происходит 3,700·1010 ак­тов распада в секунду. Применяются дробные единицы (милликюри, микрокюри и т.д.), а также кратные единицы (килокюри, мегакюри).

Радиоактивные ряды

радиоактивные семейства, группы генетически связанных радиоактивных изотопов, в которых каждый последующий изотоп возникает в результате α- или β-распада предыдущего. Каждый Р. р. имеет родоначальника — изотоп с наибольшим периодом полураспада T1/2 .Завершают Р. р. стабильные изотопы.

Если ядро испускает α-частицу, его заряд (Z) уменьшается на 2, а массовое число (А) — на 4. При испускании β-частицы Zувеличивается на 1, а А не изменяется. Следовательно, в каждом Р. р. массовые числа изотопов могут или быть одинаковыми, или различаться на число, кратное 4. Если значения массовых чисел членов данного Р. р. делятся на 4 без остатка, то такие массовые числа можно выразить общей формулой 4n (где n — некоторое целое число): в тех же случаях, когда при делении на 4 в остатке будет 1, 2 или 3, общие формулы для массовых чисел можно записать как 4n + 1, 4n + 2 или 4n + 3. В соответствии с этими формулами различают 4 Р. р., родоначальниками которых являются 90232Th (ряд 4n); n + 1); 92238U(4n + 2); 92235U(4n + 3). Сами Р. р. обычно называют по их родоначальникам. Поэтому говорят о Р. р. тория, нептуния, урана (238U) и актино-урана (235U). Иногда ряд 238U называют рядом урана-радия (наиболее устойчивый изотоп радия 226Ra — член этого Р. р.). Разумеется, радиоактивный изотоп может входить только в один какой-либо определённый Р. р.

В природе существуют ряды тория, актиноурана и урана-радия (естественные Р. р.). Это связано с тем, что периоды полураспада 232Th (T1/2 = 1,411010 лет), 235U (T1/2 = 7,13108 лет) и 238U (T1/2 = 4,51109 лет) соизмеримы с возрастом Земли (несколько миллиардов лет), и эти изотопы ещё не успели полностью распасться. Заканчиваются естественные Р. р. изотопами свинца 208Pb, 207Pb и 206Pb.