- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
- •2. Явления, подтверждающие сложность строения атома. Элементарный электрический заряд. Открытие электрона.
- •3. Периодическое изменение химических свойств атомов. Периодическая система элементов д.И.Менделеева. Ее значение для химии и физики.
- •5. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Неспособность классической физики объяснить устойчи-вость атома и характер атомных спектров.
- •6. Постулаты Бора. Квантование орбит электрона. Боровская теория водо-родного атома и водородоподобных ионов. Главное квантовое число. Боровский радиус. Опыты Франка и Герца.
- •Атом водорода. Линейчатые спектры
- •8. Гипотеза де-Бройля. Опыты Дэвиссона и Джермера. Дифракция электро-нов, атомов и молекул. Корпускулярно-волновой дуализм. Особенности поведения микрообъектов.
- •9. Статистический смысл волн де-Бройля. Сопряженные переменные. Принцип неопределенности Гейзенберга. Оценка размера и минимальной энергии атома на основе соотношения неопределенности.
- •10. Волновая функция (пси-функция). Нестационарное и стационарное урав-нения Шредингера. Операторы физических величин. Гамильтониан.
- •11. Условия, накладываемые на волновую функцию. Условие нормировки. Частица в одномерной потенциальной яме. Квантование энергии. Собственные функции. Принцип суперпозиции.
- •12. Прохождение частиц через потенциальный барьер. Коэффициенты отра-жения и прозрачности. Туннельный эффект.
- •13. Гармонический осциллятор. Нулевая энергия гармонического осциллято-ра. Правила отбора.
- •14. Уравнение Шредингера для атома водорода. Разделение переменных. Уровни энергии атома водорода. Волновые функции и распределение плотности вероятности. Момент импульса электрона и его проекции.
- •15. Классификация состояний и спектр атома водорода. Главное, азимуталь-ное и магнитное квантовые числа. Правила отбора. Вырождение энергетических уровней (кратность вырождения).
- •16. Сложение моментов импульса в квантовой механике. Спин электрона. Спин-орбитальное взаимодействие и тонкая структура спектральных линий.
- •17. Уровни энергии и спектр атома гелия (парагелий, ортогелий).
- •18. Спектры щелочных металлов. Снятие вырождения уровней. Термы ще-лочных металлов. Экспериментальная формула Ридберга. Ридберговские поправки.
- •22. Принцип Паули. Электронная конфигурация атома. Типы связей элек-тронов в атоме. Классификация состояний.
- •23. Основное состояние многоэлектронного атома. Правила Хунда. Последо-вательность заполнения электронных оболочек атома.
- •26. Атомы во внешних магнитных полях. Снятие вырождения по mJ . Эффект Зеемана. Эффект Пашена – Бака.
- •27. Электронный парамагнитный резонанс. Радиоспектроскопия. Ядерный магнитный резонанс
- •28. Атомы во внешних электрических полях. Поляризуемость атомов и молекул. Эффект Штарка.
- •30. Поступательное, колебательное и вращательное движения молекул. По-лосатые спектры молекул. Колебательное и вращательное квантовые числа. Прави-ла отбора. Комбинационное рассеяние света.
- •31. Сверхтонкая структура спектральных линий. Состав и характеристики атомных ядер. Размеры атомных ядер. Спин атомного ядра.
- •32. Изотопы, изомеры, изотоны, изобары. Трансурановые элементы.
- •33. Масса и энергия связи ядра. Дефект массы. Удельная энергия связи. Ее зависимость от массового числа.
- •34. Модели атомного ядра. Капельная и оболочечная модели. Магические и дважды магические ядра.
- •35. Сильные взаимодействия. Ядерные силы. Характеристики ядерных сил. Природа ядерных сил.
- •36. Радиоактивность. Естественная и искусственная радиоактивность. Общий закон радиоактивного превращения. Постоянная распада. Период полураспада. Среднее время жизни радиоактивного ядра.
- •37. Альфа-распад радиоактивных ядер. Бета-распад. Спектр бета-частиц. Проблема массы нейтрино. Электронный захват (е-захват).
- •38. Гамма-излучение ядер. Внутренняя конверсия. Спонтанное деление тя-желых ядер. Протонная радиоактивность.
- •39. Активность радиоактивного вещества. Единицы измерения активности. Радиоактивные семейства.
- •40. Ядерные реакции. Энергия реакции. Составное ядро. Время пролета. Эф-фективное сечение реакции.
- •41. Деление атомных ядер под действием нейтронов. Цепная ядерная реак-ция. Критическая масса. Атомная бомба. Ядерный реактор.
- •42. Синтез легких ядер. Термоядерный и инерционный синтез. Проблемы управляемого термоядерного синтеза.
- •49. Систематика элементарных частиц. Кварковая модель адронов. Попытки обнаружения кварков.
- •Специфика законов микромира. Квантовая и классическая физика. Постоянная Планка, ее физический смысл, размерность.
27. Электронный парамагнитный резонанс. Радиоспектроскопия. Ядерный магнитный резонанс
Электронный Парамагнитный Резонанс (ЭПР) — физическое явление.На основе этого явления был развит метод спектроскопии.
Cуть
Суть явления
электронного парамагнитного резонанса
заключается в резонансном поглощении
электромагнитного излучения неспаренными
электронами. Электрон имеет спин
и
ассоциированный с ним магнитный
момент.
Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B0, то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением: W = gβB0M, (где М = +J, +J-1, …-J) и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J. Расщепление энергетических уровней электрона показано на рисунке.
Энергетические уровни и разрешенные переходы для атома с ядерным спином 1 в постоянном (А) и переменном (В) поле.
Если теперь к парамагнитному центру приложить электромагнитное поле с частотой ν, поляризованное в плоскости, перпендикулярной вектору магнитного поля B0, то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ΔМ = 1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса
hν = gβB0.
Поглощение энергии СВЧ поля наблюдается в том случае, если между уровнями существует разность заселённостей.
При тепловом
равновесии существует
небольшая разность заселённостей
зеемановских уровней, определяемая больцмановским
распределением
=
exp(gβB0/kT). В такой системе
при возбуждении переходов очень быстро
должно наступить равенство заселённостей
энергетических подуровней и исчезнуть
поглощение СВЧ поля. Однако, в
действительности существует много
различных механизмов взаимодействия,
в результате которых электрон
безызлучательно переходит в первоначальное
состояние. Эффект неизменности
интенсивности поглощения при увеличении
мощности возникает за счёт электронов,
не успевающих релаксировать, и называется
насыщением. Насыщение появляется при
высокой мощности СВЧ излучения и может
заметно исказить результаты измерения
концентрации центров методом ЭПР.
РАДИОСПЕКТРОСКОПИЯ - раздел физики, в к-ром изучаются спектры поглощения разл. веществ в диапазоне радиоволн (на частотах эл--магн. поля от 103 до 6·1011 Гц). В более широком смысле к Р. относят также исследования резонансной дисперсии, релаксации, нелинейных явлений, индуциров. испускания и др. явлений резонансного взаимодействия эл--магн. и аку-стич. полей указанного диапазона с квантовыми системами.
ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС
(ЯМР), избирательное поглощение эл.-магн. энергии в-вом, обусловленное ядерным парамагнетизмом. ЯМР — один из методов радиоспектроскопии, наблюдается, когда на исследуемый образец действуют взаимно перпендикулярные магн. поля: сильное постоянное Н0 и слабое радиочастотное Н1 (106 — 107Гц). Являясь квант. эффектом, ЯМР, как и др. виды магнитного резонанса, допускает классич. объяснение нек-рых своих особенностей
