
- •1. Механ рук. Сонові види мех.. Руху
- •2. Переміщення, швидкість прискореня при поступальному русі тіла
- •3.Криволінійних рух. Тангец. І норм. Прискорення
- •4.Рух матеріальної точки по колу.Кутові переміщення, швидкість та прискорення
- •5.Інерційні системи відліку. Перший закон Ньютона
- •6.Поняття про силу. Другий закон Ньютона.
- •7.Сили в природі. Особливості деяких сил.
- •8. Імпульс тіла. Закон збереження імпульсу.
- •9. Рух системи матеріальних точок. Центр мас. Координати центра мас. Закони руху центра мас.
- •10. Механічна енергія та потужність
- •11. Кінетична енергія
- •12. Потенційні та не потенціальні сили. Потенційне енергія. Зв’язок сили з потенціальною енергією
- •13. Закон збереження повної механічної енергії
- •14. Тверде тіло як система матеріальних точок. Абсолютно тверде тіло. Поступальний та обертальних рух твердого тіла. Миттєві осі обертання.
- •15. Момент сили. Момент пари сил
- •16. Основне рівняння динаміки обертального руху.
- •17. Момент інерції. Теорема Штейнера. Вільні осі обертання.
- •19. Механічна робота та кінетична енергія обертального руху.
- •21. Рух тіла у в’язкому середовищі. Формула Стокса
- •22. Тиск в рідині та газі. Закон Паскаля. Закон Архімеда
- •23. Ідеальна рідина. Рівняння неперервності ідеальної рідини
- •24. Рівняння Бернулі та його наслідки.
- •27. Основні положення молекулярно-кінетичної теорії газів. Експерементальне підтвердження основних положень основ молекулярно- кінетичної теорії газів: дифузія та броунівський рух
- •28. Кількість речовини. Число Авогадро. Молярна маса речовини.
- •29.Ідеальний газ. Основне рівняння кінетичної теорії газів. Визначення швидкостей молекул.
- •30. Температура. Вимірювання температури. Абсолютна температура. Абсолютний нуль температур.
- •31. Рівняння Менделєєва — Клапейрона
- •32.Газові закони:
- •33. Розподіл енергії молекули за ступенями вільності. Теплоємність. Обрахунок кількості теплоти
- •34. Оборотні і необоротні процеси. Ентропія. Другий закон термодинаміки.
- •35. Колові процеси. Принцип дії теплової і холодильникової машин. Цикл Карно….
- •36. Електризація тіл.Електричні заряди. Властивості електричного заряду: два види зарядів, закон збереження заряду, дискретність заряду.
- •37. Взаємодія заряджених тіл. Закон Кулона
- •38. Електричне поле. Вектор напруженості електричного поля. Принцип суперпозиції полів…
- •39.Потік вектора напруженості. Теорема Остроградського – Ґаусcа
- •40. Робота сил електричного поля. Циркуляція вектора напруженості.
- •41. Потенціальний характер електричного поля. Напруженість як градієнт потенціалу
- •42. Електричне поле в діелектриках. Типи діелектриків. Поляризація діелектрика. Діелектричні матеріали
- •43. Провідники в електричному полі. Розподіл заряду в провіднику. Зв'язок між напруженістю поля в поверхні провідника й поверхневою густиною зарядів
- •44. Електроємність провідника. Конденсатори. Ємність конденсатора.
- •45.Енергія і густина енергії електричного поля.
- •46. Електричний струм. Сила струму та густина струму. Закон Ома для ділянки кола.
- •47. Опір провідність, їх залежність від температури..
- •49. Джерелос струму. Сторонні сили. Електрорушійна сила джерела струму. Закон Ома для повного кола.
- •50. Правила Кірхгофа для розгалужених кіл та їх застосування.
- •51. Робата і потужність постійного електричного струму. Теплова дія ….
- •52. Взаємодія електричних струмів
- •53.Закон Біо-Савара-Лапласа
- •54.Дія магнітного поля на провідник зі струмам закон Ампера.
- •55. Магнітне поле рухомого заряду сила Лоренца. Рух заряджених частинок у магнітному полі
- •56. Потік вектора магнітної індукції . Теорема Остроградського – Гауса для магнітного поля.
- •1.Потік вектора магнітної індукції
- •57.Циркуляція індукції магнітного поля.Закон повного струму
- •60. Електромагнітна індукція. Досліди Фарадея. Закон електромагнітної індукції. Правило Ленца.
- •61. Явище самоіндукції та взаємоіндукції. Індуктивність та кофіцієкт само індукції
- •62. Енергія і густина енергії магнітного поля
- •63. Рух тіла під дією пружинних і квазіупружних сил. Гармонісні коливання.
- •64. Рівняння руху найпростіших коливальних систем без тертя: пружинний, фізичний та математичний маятники. Власна частота коливань.
- •65. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі
- •67.Вимушені коливання. Явище резонансу. Поняття про автоколивальні системи.
- •68.Коливальний контур.Вільні гармонічні електромагнітні коливання.Власна частота коливань. Формула Томсона.
- •69. Затухаючі електромагнітні коливання. Збудження не затухаючих електромагнітних коливань автоколивальні системи
- •71. Коло змінного струму з опором, індуктивністю і ємністю. Векторні діаграми. Закон Ома для кола змінного струму. Резонанс напруг і струмів.
- •72. Робота і потужність зміного струму.
- •73.Будова та принцип дії трансформатора. Застосування трансформаторів у техніці. Проблема переносу та розподілу електроенергії на відстань.
9. Рух системи матеріальних точок. Центр мас. Координати центра мас. Закони руху центра мас.
Матеріальна точка — поняття відносне, а не абсолютне. Одне й те саме тіло в одній задачі можна розглядати як матеріальну точку (рух космічного корабля на орбіті, рух океанського лайнера, які є малими порівняно з протяжністю шляхів, що вони долають), а в іншій — як тіло скінченних розмірів і певної форми (стикування одного космічного корабля з іншим). У більшості випадків далі у нашому курсі вважатимемо рухомі тіла матеріальними точками. Зрозуміло, що задача опису механічного руху тіл дуже спроститься. У наведених вище прикладах усі точки рухомого тіла рухалися по-різному. Але на практиці дуже часто тіла рухаються так, що всі їх точки рухаються однаково. Однаково рухаються точки кузова автомобіля на прямій ділянці дороги, різця токарного верстата, вантажу на канаті підіймального крана кабінок колеса огляду поршня у циліндрі двигуна автомобіля, шухляди, що витягують зі столу, санчат, що опускаються з гори, голки швейної машини, ручки під час писання тощо. Рух тіла, під час якого всі його точки рухаються однаково, називають поступальним. Коли тіло рухається поступально, будь-який виділений напрям у тілі, наприклад пряма вздовж планки висувної шухляди, залишається паралельним своєму положенню у будь-який момент часу. Іншими словами, тіло при поступальному русі не обертається. Зрозуміло, що під час дослідження поступальних рухів досить описати рух лише однієї точки тіла, що також значно спрощує розв'язання основної задачі механіки. Місцезнаходження досліджуваного тіла під час руху можна визначити, вказавши його розташування відносно іншого тіла. Тіло, відносно якого визначають положення інших тіл у різні моменти часу, називають тілом відліку. Для визначення положення тіла відносно тіла відліку математично користуються певною системою координат. За початок декартової системи координат беруть довільну точку тіла відліку, з якою жорстко пов'язують осі системи. Користуючись одиничним масштабом, можна визначити координати х, у, г будь-якої точки простору, відкладаючи масштаб у напрямі координатних осей. Положення кожної точки у просторі визначається трьома координатами, на площині — двома, на прямій — однією. Якщо точка рухається відносно тіла відліку, то потрібно знати не тільки де, а й коли вона перебуває у відповідному місці. Отже, для одержання повної інформації про рух тіла (точки), треба вміти вимірювати час. Час вимірюють, використовуючи який-небудь перебіг рівномірного періодичного процесу, наприклад хід годинника. Тіло відліку, з яким пов'язана система координат, і годинник для вимірювання часу утворюють сисему відліку. Наведемо приклад системи відліку, яка відрізняється від описаної вище. Щоб виявити місцезнаходження літака, радіолокатор посилає сигнал і через час і приймає відбитий сигнал Місцезнаходження літака відносно радіолокатора у цьому разі визначається також трьома координатами: відстанню до літака І і двома кутами, які визначають за розташуванням антени під час вимірювань, — кутом азимуту напряму на літак відносно напряму на північ і кутом між горизонталлю та напрямом на літак. Під час руху положення тіла змінюється відносно системи координат, тобто з часом змінюються і значення координат певної точки тіла. Розглянемо, як у фізиці визначають зміну фізичної величини з часом. Наприклад, координати точки, відлічені вздовж осей координат у момент часу, який прийняли за початковий (і0 = 0), дорівнювали відповідно х0, у0, г0. Через певний інтервал часу і - і0 (або просто і, оскільки і0 = 0) вони змінилися і набули значень х, у, г. Це означає, що за час і координата х змінилася на (х - х0), координата у — на (у - у0), координата г — на (г - г0). Кожна з різниць х - х0, у - у0, г - г0 є також фізичною величиною — зміною координат х, у, г за відповідний інтервал (зміну) часу і - і0. Щоб визначити зміну будь-якої фізичної величини, треба від її кінцевого значення відняти її початкове значення. Система центру мас: Зручність введення поняття центру інерції в тому, що рівняння руху для нього в багатьох випадках можна відокремити від рівнянь руху складових системи матеріальних точок відносно цього центру. Наприклад, центр руху замкненої системи матеріальних часток рухається у інерційній системі координат рівномірно й прямолінійно. В такому випадку зручно перейти до системи центру мас, тобто зв'язати початок системи координат з центром інерції і розглядати лише відносний рух часток, які входять в систему. Схожа ситуація виникає тоді, коли система незамкнена, але сили, які діють на матеріальні точки пропорційні їхнім масам. Таку властивість мають сили тяжінння. В такому випадку центр інерції рухається з прискоренням, яке визначається відношенням сумарної сили до повної маси системи часток. Систему матеріальних часток можна розглядати, як одну матеріальну частку із масою, яка дорівнює сумарній масі усіх часток, розташовану в центрі інерції. Рух твердого тіла довільної форми можна розділити на поступальний рух центру мас та обертальний рух відносно цього центру.а дельта), який пишуть перед позначенням змінюваної фізичної величини.