
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
7) Классификация искусственных спутников Земли (изс) по назначению
Искусственные спутники Земли (ИСЗ) характеризуют относительно небольшое удалении от Земли, периодичность изменения внешних условий и прохождения над определенными географическими районами Земли, кратное периоду обращения. ИСЗ в зависимости от их назначения подразделяются на исследовательские и технические.
К исследовательским ИСЗ относятся: ресурсные, метеорологические, геодези-ческие, астрономические и геофизические. К техническим относятся спутники связи и навигации.
Ресурсные ИСЗ предназначены для изучения природных ресурсов Земли. Ре-сурсные спутники, используемые для изучения природных ресурсов, в зависимости от оснащенности аппаратурой для съемок подразделяются на ИСЗ оснащенные оптиче-ской аппаратурой дистанционного зондирования (американский Landsat, французский Spot, индийский IRS, японский Adeos, бразильский Mecb, китайский Cbers и российский «Ресурс-0) и ИСЗ оснащенные радиолокационными системами (европейские кос-мические системы Ers и Envisat, японский спутник Jers-1, канадский Radarsat, россий-ский спутник “Алмаз” и российский модуль “Природа”.
Различают три основных типа оптических датчиков дистанционного зондирования Земли: телевизионные камеры, оптические камеры с механическим сканированием, оптико-электронные камеры на приборах с зарядовой связью (ПЗС). Телевизионные камеры работают в том же диапазоне (0,4-0,9 мкм), что и фотографиче-ские и используются для получения изображений со средним разрешением. Съемочные оптические камеры с механическим сканированием по сравнению с телевизионными имеют более широкий спектральный диапазон съемки: от ультрафиолетового до тепло-вого инфракрасного (0,3-14 мкм). В оптико-электронных камерах на приборах с зарядовой связью элементы с механическим сканированием не используются. Строка изображения в одном спектральном диапазоне формируется при помощи линейной матрицы (линейки) детекторов на ПЗС, ориентированной перпендикулярно направлению полета спутника. Срочная развертка изображения проводится путем последовательного электронного включения детекторов.
Ресурсные спутники, оснащенные радиолокационной аппаратурой имеют ряд преимуществ над спутниками оснащенных оптической аппаратурой, которые заключа-ются в возможности проведения съемки при любой освещенности и погодных условиях. Кроме того, с использованием радиолокационных станций бокового обзора (РЛС БО) можно получить изображения не только земной поверхности, но и объектов, нахо-дящихся на определенной глубине.
Ресурсные ИСЗ, предназначенные для изучения глобальных изменений окру-жающей среды, созданы по программе США EOS. В рамках программы EOS до 2014г. будет осуществлен запуск 21 ИСЗ, с помощью которого будут осуществляться всесто-ронние исследования атмосферы, океанов, криосферы, биосферы и поверхности суши, а также будет выполнен ряд экспериментов, связанных с изучением особенностей энер-гетического баланса планеты, глобального водооборота и биогеохимического цикла. При этом в ходе программы будут фиксироваться происходящие глобальные изменения, выявляться ключевые процессы, регулирующие состояние окружающей природной среды, а также совершенствоваться модели, позволяющие изучать и прогнозировать эти изменения.
Работы по программе ЕОS осуществляются по трем основным направлениям: развитие научных отраслей, связанных с изучением протекающих на планете глобальных, естественных и антропогенных процессов; создание глобальной информационной системы; а также последовательный вывод на орбиту космических аппаратов серии ЕОS. Обработку и архивирование поступающей информации, поступающей со спутников серии ЕОS, будут проводить 8 научно-исследовательских центров.
Метеорологические спутники в зависимости от вида их орбит можно разделить на две группы: ИСЗ выведенные на низкие приполярные орбиты и ИСЗ работающие на геостационарных орбитах. Метеорологические системы с космическими аппаратами на низших приполярных орбитах обеспечивают решение следующих задач:
- мониторинг облачного покрова Земли и других погодных явлений в видимом и инфракрасном диапазонах спектра;
- измерение вертикального профиля температуры атмосферы,характеристики приповерхностного ветра и температуры поверхности моря;
- заблаговременное предупреждение об опасных явлениях природы;
- получение информации о состоянии околоземного космическогопространства;
- сбор информации с платформ геофизического мониторинга окружающей среды;
- прием и ретрансляция сигналов бедствия в рамках системы поиска и спасения, а также определение местоположения источников этих сигналов.
Метеоинформация поступает из трех ярусов. Первый – долговременные орби-тальные станции – визуальное наблюдение за приливами, обвалами, пыльными и пес-чаными бурями, цунами, ураганами. Второй – автоматические спутники типа «Ме-теор», NOAA – поставляют информацию для прогнозирования погоды в глобальном и локальном масштабах, а также ведутся наблюдения за средне масштабными и локаль-ными процессами в атмосфере. Третий – спутники с геостационарной орбитой для не-прерывного наблюдения за глобальными динамическими процессами в атмосфере Зем-ли.
К первой группе относятся спутники метеорологической системы NОАА (США), российской метеорологической спутниковой системы «МЕТЕОР» и китайский спутник серии FY-1.
Ко второй группе относятся спутники выведенные на высокие геостационарные орбиты. Геостационарными метеорологическими спутниками обладают США (система Geos), Европейское космическое агентство (система Meteostat), Россия (ИСЗ «Электро»), Индия (система Insat) и Япония (система GMS).
Геостационарная система Geos базируется на двух геостационарных космиче-ских аппаратах типа Geos и обеспечивает получение оперативной информации о состоянии погоды, заблаговременное выявление опасных природных явлений, типа ураганов и сильных штормов, сбор и ретрансляцию в наземный центр, обработки данных с наземных, морских и воздушных платформ мониторинга окружающей среды, а также получение информации о состоянии околоземного космического пространства.
Геодезические ИСЗ предназначены для построения геодезических сетей – про-странственной триангуляции, для определения фигуры Земли и изучения ее строения. Для этих целей используются американские ИСЗ серии «Geos».
Астрономические ИСЗ позволяют изучать другие планеты и избежать при этом влияния атмосферы, т.е. исследования можно проводить в более широком диапазоне спектра чем с Земли.
В США разработан ряд астрономических спутников. Это в первую очередь ор-битальная астрономическая лаборатория» (ОАО) при помощи которой проводились исследования в ультрафиолетовом диапазоне Венеры, Марса, Юпитера, Сатурна и Урана. Спутник SAS предназначен для исследования космического пространства в рентгеновском и гамма- диапазонах спектра. Кроме того, 2 декабря 1995г. Европейским космическим агентством (ЕКА) и американским Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) была запущена орбитальная солнечная лаборатория «Сохо», предназначенная для изучения солнечно-земных связей и процессов, происходящих в гелиосфере.
Геофизические спутники применяются для изучения верхних слоев атмосферы и ближайшего к Земле космического пространства. К ним относятся ИСЗ серии «Кос-мос».
Спутники связи относят к техническим и обеспечивают ретрансляцию радио-сигналов между наземными станциями, расположенными на большом расстоянии друг от друга. В России для этих целей используются спутники серии «Орбита», «Экран», «Горизонт». В США для обеспечения комуникационной связи используются спутники серии Intelsat, которые обеспечивают связь с 73 наземными станциями в 55 странах и позволяют обслуживать до 30 000 каналов телефонной связи. Для телевизионного ве-щания НАСА был разработан специальный спутник ATS, в число задач которого вхо-дит ретрансляция телепрограмм, а так же решения метео- и навигационных задач.
Навигационные спутники предназначены для определения положения кораблей и самолетов, относительно навигационного ИСЗ в нескольких точках орбиты. Для этих целей используются американские спутники серии «Транзит» и «Секор».