
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
60) Генерализация аэрокосмического изображения.
С изменением масштаба снимка происходит обобщение изображения, следовательно, изменяется и его дешифрируемость. Решение задач генерализации при переходе от снимков к карте, а так же разработка проблем автоматизации дешифрирования требует знания тех закономерностей, которым подчиняется обобщение изображения при переходе от масштаба к масштабу.
Генерализация изображения на аэрокосмических снимках включает геометрическое и тоновое обобщение рисунка изображения и зависит от ряда факторов – техни-ческих (масштаб и разрешение снимков, метод и спектральный диапазон съемки) и природных (влияние атмосферы, особенности территории). В результате такой генерализации изображение многих черт земной поверхности на снимках освобождается от частностей, в то же время разрозненные детали объединяются в единое целое, поэтому более четко изображаются объекты высших таксонометрических уровней, крупные региональные и глобальные структуры, глобальные и планетарные закономерности.
В отличие от картографической генерализации, носящей творческий характер, генерализация изображения космических снимков жестко подчиняется физико-техническим законам и управляющее воздействие на нее более ограничено. Оно может быть реализовано путем продуманного выбора средств и параметров съемки (съемочных систем, масштаба, зоны спектра) или преобразования снимков (увеличения уровней квантова¬ния, параметров фильтрации).
Экспериментально выявлены некоторые закономерности генерализации изображения космических снимков. Размер вос¬производимых объектов зависит от их формы и от контраста с окружающим фоном; происходит упрощение формы, обобщение тонов и цветов; черные и белые тона исчезают и заменяются менее контрастными; характерно более быстрое исчезновение темных контуров на светлом фоне, чем светлых на тем¬ном фоне. По-разному обобщаются линейные, размытые (диф¬фузные), мозаичные границы и контуры.
Влияние генерализации изображения на дешифрируемость космических снимков двойственное; оно может быть и положительным и отрицательным. С одной стороны, сильно обобщенное изображение умень¬шает возможность высокоточного и детального картографирования по космическим снимкам, в частности, влечет ошибки дешифрирования. Недаром стремятся к использованию сним¬ков высокого разрешения, а для оценки полноты и достовер¬ности дешифрирования космических снимков прибегают к проверке по аэроснимкам. С другой стороны, обобщенность изображения космического снимка относится к его достоинствам. Во-первых, это свойство позволяет использовать космические снимки для непосредст¬венного составления тематических карт в средних и мелких масштабах без трудоемкого детального многоступенчатого пе¬рехода от крупных масштабов карт к мелким, что обеспечива¬ет экономию времени и средств. Во-вторых, оно дает преиму¬щества смыслового, содержательного плана. Оказалось, что на космических снимках выявляются важные объекты, скрытые на снимках более крупных масштабов.
Один из практических выходов исследований по генерали¬зации изображения, космических снимков состоит в определении оптимального соотношения масштабов космических сним¬ков и составляемых по ним карт. Детальность изображения на снимках обычно значительно выше детальности карт соответствующих масштабов; поэтому для картографических работ целесообразно использовать снимки с увеличением, коэффици¬ент которого колеблется для снимков разного типа от 2 до 40. По наиболее реалистичным оценкам это соотношение составляет в случае сканерных снимков около 2; для фотографичес¬ких снимков разрыв в масштабах снимков и карт может увеличиваться до 5—20.
Сравнивание дешифрируемости снимков различных масштабов позволило получить общие закономерности географического обобщения воздушных и космических снимков Земли. Изменение масштаба съемки влечет за собой и изменение рисунка. Одни объекты в силу обобщения отходят на второй план или вовсе не изображаются на снимках, другие становятся основными. Анализ аэрокосмических снимков показал, что оптимальными масштабами для дешифрирования являются следующие:
- детальные 1:1000 - 1:2000
- фации;
-крупномасштабные 1:2000 - 1:10 000
- среднемасштабные 1: 15 000-1:25 000 – урочища;
- мелкомасштабные 1:З00 000-1:200 000 – группы урочищ;
- сверхмелкомасштабные 1:1 000 000-1:10 000 000 – ландшафты;
- глобальные 1:50 000 000 и мельче географические зоны.
Для количественной оценки степени обобщения контуров существует несколько критериев. Поскольку изображение контура представ¬ляет собой извилистую линию с тем большим количеством извилин, чем меньше она обобщена, можно объективно оценивать степень обобщения контура, сравнивая извилистость на разных изображениях.
Коэффициент общей извилистности (по Н.М. Волкову) подсчитывается по формуле: K1=L/D, где D – длина прямой линии между точками А и В; L - длина извилистой линии между этими точками.
Коэффициент извилистности (по С.А. Николаеву) определяется следующим образом: K2=l/d, где l – средняя длина дуг из¬вилин; d – средняя длина хорд.
Коэффициент изменения площадей при переходе от масштаба к масштабу равен: Ks=S1/S2.
Линейные резкие контуры при переходе к снимкам более мелкого масштаба изменяют длину крайне незначительно. Существенно укора¬чиваются длины контуров, проведенные по мозаичным границам (от 30 до 50% длины). В соответствии с этим уменьшается коэффициент общей извилистности, чем меньше, тем извилистее сам контур.