
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
58) Общая схема компьютерной обработки аэрокосмических снимков.
Автоматизированное дешифрирование основано на использовании для обработки аэрокосмического изображения современных компьютерных технологий.
Компьютерная обработка снимков позволяет решать следующие задачи:
- геометрическое преобразование снимков, изготовление фотопланов и фото-карт;
- яркостные и цветовые преобразования;
- получение количественных характеристик;
- визуализация цифровых данных дистанционного зондирования;
- автоматизированное дешифрирование снимков (классификация).
Ввод и внутреннее представление изображений. Наиболее удобной для компьютерной обработки является информация, полученная с помощью санирующих си-стем, принимаемая в цифровой форме. Сигналы сканеров записываются на магнитную ленту и могут быть преобразованы для ввода в компьютер. При использовании фотографических аэрокосмических снимков, для получения их растровых изображений, используются фотограмметрические сканеры, имеющие высокую геометрическую и радиометрическую (яркостную) точность.
После того, как изображение получено в цифровом виде, принципиальным вопросом является внутреннее представление данного изображения в системе. Чаще всего используется табличное представление в виде матрицы.
Координатная привязка и геометрическая коррекция фотограмметрического преобразования снимков. После ввода изображения снимка в компьютер приступают к его координатной привязке и геометрическому преобразованию с целью перевода изображения в необходимую картографическую проекцию.
При работе с аэрофотоснимками данные задачи решаются с использованием опорных точек, на основании которых проводится фотограмметрическая обработка снимков. В Республике Беларусь для этих целей используется цифровая фотограмметрическая система «Realistic-M».
Предварительная обработка изображения проводится практически всегда, независимо какие снимки (сканерные, фотографические) подвергаются обработке. Это обусловлено наличием во входном изображении шумов и искажений.
Искажение яркости объектов может быть обусловлено условиями фотосъемки, обработки фотоматериалов и условиями сканирования. Кроме того на снимках могут иметь место локальные искажения плотности изображения, которые проявляются в виде точек и др. Так могут изображаться объекты, которых нет в действительности: например, солнечные блики, тень облаков и т.д. Часто при предварительной обработке изображения сталкиваются с информационным шумом. В роли подобного шума высту-пают объекты, которые присутствуют как на снимке, так и в действительности. Но их наличие не существенно для поставленной задачи. А лишь затрудняет дешифрирова-ние. Например, при составлении карты растительности несущественную роль играют линии электропередач, мелиоративная сеть и др.
На данном этапе обработки изображения осуществляется коррекция гисто-граммы, фильтрация и устранение шума, что позволяет повысить контрастность изоб-ражения, устранить мелкие детали. Яркостные преобразования изображения выполня-ются главным образом с помощью аналоговых устройств и позволяют проводить синтезирование цветных изображений, квантование по уровням оптической плотности, изменение контраста, подчеркивание границ контуров.
Наиболее сложным этапом компьютерной обработки изображения является автоматизированное дешифрирование, т.е. выделение границ объектов или сегмента-ция. Дешифровщику при работе со снимками постоянно приходится, основываясь на дешифровочных признаках опознавать и выделять однородные объекты. При компью-терном дешифрировании космических снимков одним из распространенных является подход на основе спектральных признаков. Он базируется на том, что яркость хроматических объектов (имеющих определенную окраску) в разных спектральных зонах не одинаково и характеризуется коэффициентом спектральной яркости. Таким образом, каждый элемент растра – пиксел соответствует яркости объекта для определенной области электромагнитного спектра. Каждый пиксел растра записывается как числовой элемент матрицы в файле данных.
На этапе сегментации основная задача заключается в дифференциации изображения на области (сегменты) по определенному критерию. В качестве критерия могут служить текстура и тон изображения. После того как изображение будет разбито на однородные области (контуры), приступают к их классификации.