
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
Цветовая гамма изображений является существенным признаком дешифриро-вания. Этот признак следует рассматривать в двух аспектах. В первом случае, когда изображение на воздушных и космических снимках формируется в цветах, близких к естественным цветам (цветные снимки), распознавание и классификация объектов местности не вызывает особых затруднений. В данном случае учитываются такие ха-рактеристики цвета, как его светлота и насыщенность, а также различные оттенки одного и того же цвета. В другом случае цветное изображение формируется в про-извольных цветах (псевдоцветах), как это имеет место при спектрозональной съёмке. Смысл этого сознательного искажения цветовой гаммы натуры на изображении состоит в том, что на снимках наблюдатель легче воспринимает цветовые контрасты деталей изображения, поэтому цветные воздушные и космические снимки обладают более высокой дешифрируемостью, чем черно-белые.
Цвета спектрозонального аэроснимка менее стабильны, чем цветного снимка в естественных цветах. При необходимости они могут быть значительно изменены с по-мощью светофильтров. Известно, например, что лиственные породы на плёнке СН-2 (негатив) получаются сине-зелёными, а хвойные – пурпурными. При печати на бумаге Ф-1, Ф-2 лиственные леса передаются красным или оранжевым, а хвойные - сине-зелёным или зелёным цветом. При печати на бумаге СБ-2 хвойный лес изображается буровато-коричневым цветом, а лиственный - светло-зелёным или голубым.
Существует особый приём при дешифрировании, когда цвет на изображениях используется для кодирования деталей изображения, имеющих одинаковую оптиче-скую плотность. Этот метод широко используется при дешифрировании зональных снимков, полученных в результате многозональных съёмок. Он весьма эффективен при проведении ландшафтного дешифрирования. В этом случае отдельные элемен-тарные ландшафтные единицы можно закодировать каким-либо цветом, исходя из их родственных признаков и свойств.
Чтобы получить цветное синтезированное изображение с помощью проектора, для этого три зональных черно-белых изображения проектируются соответственно через зеленый, синий и красный светофильтры на экран многоканального проектора. В результате на экране проектора формируется цветное изображение. Кроме того, цвет-ное изображение можно зафиксировать на цветную фотобумагу или пленку. Подбор цветной гаммы синтезированных снимков производится так, чтобы обеспечить наилучшую дешифрируемость снимков. Хотя цветное изображение на синтезирован-ных снимках формируется в ложных цветах, однако это повышает выразительность изображения и дешифрируемость объектов. В отличие от черно-белых зональных снимков, синтезированные изображения обеспечивают большую наглядность фотоин-формации, что облегчает процесс визуального дешифрирования.
55) Основные этапы полевого метода дешифрирования.
При полевом дешифрировании опознавание объектов производится в поле, на местности, путем сравнения объекта в натуре с его изображением на снимке. Основные достоинства данного метода следующие: высокая степень достоверности дешифрирования и максимальная полнота получаемых результатов. К основным недостаткам следует отнести: высокая трудоемкость, большие затраты времени и тру-довые затраты.
Полевое дешифрирование состоит из трех этапов: подготовительный, полевое дешифрирование и оформление результатов.
Первая стадия подготовительного этапа начинается со сбора и изучения ведомственных материалов, просмотра топографических и тематических карт. Сравнивание различных тематических карт позволяет оценить их пригодность для дальнейшей работы.
Вторая стадия подготовительного этапа заключается в подготовке материалов аэрокосмической съемки к дешифрированию. При подборе снимков необходимо особое внимание уделить оптимальным срокам съемки и масштабу. Желательно, чтобы снимки соответствовали масштабу составляемой карты, если масштаб неиз-вестен, то его определяют в зависимости от тематики составляемой карты и снимки должны быть соответствующих сроков съемки. Например, при почвенном дешифрировании, наиболее эффективно использовать снимки ранневесенних сроков съемки. Снимки раскладываются по номерам и маршрутам залета, при необходимости изготавливаются накидные монтажи, фотосхемы или фотопланы.
Третья стадия посвящается предварительному дешифрированию снимков. Хорошее знакомство с местностью позволяет провести камеральное дешифрирование. Для фиксации результатов дешифрирования используют пластик или лавсановую пленку, на которую наносят объекты, которые не вызывают сомнения в правильности их выделения (дорожная или гидрографическая сеть, населенные пункты и т.д.). Кроме того, могут выделяться контуры объектов (почв, растительности) контрастно выделяю-щихся на снимках. На данной стадии также намечаются места закладки ключевых участков или наземных маршрутов.
-Маршруты должны быть проложены с таким расчетом, чтобы исследователь мог посетить участки и объекты, соответствующие предмету исследования.
-С целью экономии времени желательно, чтобы протяженность маршрута давала возможность заканчивать его в один день, и чтобы он замыкался. Необходимо это делать с учетом объема работ на маршруте.
-Предусмотреть отходы от маршрута для уточнения объектов исследования, на расстояние не более 100-300 м.
-Густота маршрутов определяется с учетом сложности ландшафтов, а так же чтобы просматривалось межмаршрутное пространство.
-Каждый маршрут следует подписать по схеме порядковым номером и поставить предполагаемую дату исследования, определить задачи и объем работ и время выполнения.
Полевое дешифрирование. Данный этап дешифрирования выполняется в полевых условиях. Он начинается с поиска на местности легкоопознаваемых объектов (перекрестки дорог, отдельно стоящие здания, деревья) и ориентирование, т.е. привязки аэроснимка. Существуют различные способы нанесения на снимки недостающих объектов: способ створов, способ промеров, способ линейной засечки и полярный способ.
После привязки снимка начинается полевое его дешифрирование, которое заключается в посещении всех объектов (контуров).
По мере накопления фактов возникает необходимость в их регистрации. Для этой цели используют разные способы: составление схем, зарисовки, ведение записей, фотографирование или, чаще всего, все вместе.
Если работу проводят несколько дешифровщиков, необходимо обратить внимание на сводку материалов.
Результаты дешифрирования вычерчиваются либо непосредственно на снимках, либо на кальке или на пластике, наложенных на снимок. Желательно черчение вести цветными ручками и по ходу ведения исследования.
Полевые записи ведутся в журнале полевого дешифрирования.