
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
44) Информационные свойства снимков.
Снимок может быть подвергнут как формальному, так и смысловому анализу. В основу формальной оценки объема информации, содержащейся в снимке, может быть положена ее связь с разрешающей способностью. Чем выше разрешающая способность снимков, тем больший объем информации в них содержится. На основе смысловой информации можно определить ценность ее для исследователя.
К информации относятся только те из фактов, которые отвечают поставленной задаче, цели. Содержание и количество извлекаемой из снимков информации обуславливается уровнем наших знаний или заранее сформулированныи требованиями.
Для определения максимального количества информации, введено понятие «полная информация», под которой следует понимать ту информацию, которую в каждом конкретном случае можно извлечь из снимков, полученных при оптимальных технических и погодных условиях съемки, а так же масштабе. Однако, часто используются снимки, обладающие свойствами отличными от оптимальных. Содержащееся в них количество информации в общем случае меньше полной информации и составляет оперативную информацию. В оперативную информацию входят те из необходимых сведений, которые можно рассчитывать: получить путем дешифрирования данных снимков. Однако извлеченная информация почти всегда меньше оперативной из-за ошибок дешифрирования.
Ошибки при дешифрировании объектов могут возникать по следующим при-чинам:
при дешифрировании слабоконтрастных объектов;
ложное опознавание объектов из-за совпадения дешифровочных признаков (например, известняки и снежники).
Однако часто дешифровщик сталкивается с помехами и шумом: толщи атмосферы, блики, туман, пыльные бури, облака, при синоптическом дешифрировании космических снимков Земли помехой служат изображение поверхности земли и воды, которое накладывается на изображение облачности.
Качественное разнообразие и количество извлеченной информации в значительной степени определяются свойствами информационного поля снимков. Простота сопоставления снимков с натурой, внешнее совпадение изображения объектов с тем, как мы их видим, определяют наглядность снимков.
По мере развития метода большое значение стали придавать выразительности изображения. Изображение тем выразительнее, чем интенсивнее и контрастнее выделены на нем объекты и явления, являющиеся предметом дешифрирования. Наглядность возрастает с укрупнением масштаба.Выразительность же связана с уровнем обобщенности фотоизображения и поэтому оно оптимально для различных объектов и комплексов в разных масштабах.
Дешифрируемость аэрокосмических снимков – это сумма их свойств, определяющих количество информации, которую можно получить путем дешифрирования снимков для решения данной задачи. Количественно ее можно выразить через отношение оперативной информации (Iо), содержащуюся в данных снимках, и полной: R=Io/Iп
Однако часто для определения дешифрируемости снимков используется относительная дешифрируемость, которая характеризуется через отношение полезной информации (I) которую несет аэроснимок, к полной информации, которая может быть получена по аэроснимку: Dc=I/Imax. Это отношение назовем коэффициентом дешифрируемости. По этой же формуле может быть вычислена и относительная дешифрируемость отдельных объектов. Таким образом, через коэффициент дешифрируемости выражается ценность аэроснимка, как источника информации.
Полнота дешифрирования может быть охарактеризована через отношение ис-пользованной (распознанной) полезной информации (I1) ко всей полезной информации, содержащейся в данных аэроснимках: Gд=I1/I.
Полнота дешифрирования в большой мере зависит от подготовки дешифров-щиков, их опыта и специальных знаний.
Под достоверностью дешифрирования следует понимать вероятность пра-вильного опознавания или истолкования объектов. Она может оце¬ниваться через от-ношение количества правильно распознанных объек¬тов (n) к сумме всех распознанных (N): Pд=n/N