Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы дистанционных исследований. Ответы на во...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
195.04 Кб
Скачать

32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.

33) Радиолокационные снимки, их особенности и основные области применения.

Радиолокационная съемка проводится в зоне электромагнитного спектра с длинами волн от нескольких миллиметров до метров.

РЛ-изображение местности является результатом взаимодействия электромагнитных колебаний, генерируемых РЛС, с земной поверхностью.

При достижении сигналом земной поверхности происходит отражение и рассеяние волн, а также проникновение вглубь земной поверхности. Интенсивность отра-женного сигнала определяется свойствами поверхности (шероховатость, влажность, ориентация в пространстве, крутизна склонов, диэлектрическая проницаемость и др.) и длиной волны излучения.

Благодаря особенностям формирования радиолокационного изображения, на радиолокационных снимках можно получать дополнительную информацию о разрывных тектонических нарушениях, изучении закрытых структур, состоянии сель-скохозяйственных культур, увлажненности почвогрунтов и т.д.

Радиолокационная съемка (активная радиолокация) по отношению к фотографической и телевизионной съемке обладает рядом преимуществ, а именно:

- возможностью проведения съемки в любое время суток и при любых погодных условиях (кроме грозовой облачности);

- независимостью разрешающей способности станции от дальности объекта;

- возможностью съемки без непосредственного полета над объектом;

- большой полоса захвата на местности при малой высоте полета;

- возможностью обнаружения объектов по их радиолокационным, а не оптическим контрастам;

- возможностью передачи полученной информации с борта носителя на наземные пункты по радиоканалу на значительные расстояния.

Исходя из особенностей радиолокационной съемки, вытекают возможности практического использования информации в следующих случаях:

- получение изображения поверхности Земли в труднодоступных районах в т.ч. там, где фотосъемка затруднена из-за постоянного облачного покрова.

- оперативное получение в любое время суток и в любых, кроме грозовой об-лачности, погодных условиях достоверной информации при определении масштабов стихийных бедствий: наводнений, тайфунов, извержения вулканов и др.

- контроль загрязнения морской поверхности при работе бурильных установок (платформ), нефтяных терминалов и других мест возможных выбросов, определение границ загрязнений при авариях танкеров и др.

- оценка состояния ледового покрова и проводка судов в тяжелой ледовой об-становке и др.

Масштабы радиолокационных аэроснимков являются жесткими значениями и определяются конструкцией радиолокационной станции. РЛСБО "Торос", "Нить" поз-воляют получать изображение очень трудно добиться постоянства масштаба как по азимуту (по оси х), так и по дальности (по оси у).

34) Активные виды дистанционных съемок и их использование при изучении природных явлений.

Радиолокационная съемка проводится в зоне электромагнитного спектра с длинами волн от нескольких миллиметров до метров.

РЛ-изображение местности является результатом взаимодействия электромагнитных колебаний, генерируемых РЛС, с земной поверхностью.

При достижении сигналом земной поверхности происходит отражение и рассеяние волн, а также проникновение вглубь земной поверхности. Интенсивность отра-женного сигнала определяется свойствами поверхности (шероховатость, влажность, ориентация в пространстве, крутизна склонов, диэлектрическая проницаемость и др.) и длиной волны излучения.

- радиолокационный сигнал при падении на зеркальную поверхность, например воды, отражается в сторону от радиолокатора и в приемник не попадает. Следовательно, при фиксации его на пленке, почернение определяется только уровнем собственных шумов РЛС, поэтому водные объекты изображаются темным тоном;

- при падении луча на поверхность под углом 900 отражение будет происходить в обратном направлении и величина отраженного сигнала будет максимальной, т.е. чем больше крутизна склонов, тем более светлым тоном они изображаются на снимках;

- при взаимодействии сигнала РЛС с шероховатой поверхностью происходит явление диффузного рассеяния электромагнитных колебаний во всех направлениях, и поэтому только часть отраженных волн попадает в приемник РЛС. Интенсивность принятого отраженного сигнала в этом случае имеет очень широкий диапазон.

Зависимость тона радиолокационного изображения от увлажненности поверхности горных пород, их плотности и других свойств, вызывающих поглощение радиоволн, что приводит к уменьшению интенсивности сигнала, пришедшего в приемник станции.

Благодаря особенностям формирования радиолокационного изображения, на радиолокационных снимках можно получать дополнительную информацию о разрывных тектонических нарушениях, изучении закрытых структур, состоянии сельскохозяйственных культур, увлажненности почвогрунтов и т.д.

Радиолокационная съемка (активная радиолокация) по отношению к фотографической и телевизионной съемке обладает рядом преимуществ, а именно:

- возможностью проведения съемки в любое время суток и при любых погодных условиях (кроме грозовой облачности);

- независимостью разрешающей способности станции от дальности объекта;

- возможностью съемки без непосредственного полета над объектом;

- большой полоса захвата на местности при малой высоте полета;

- возможностью обнаружения объектов по их радиолокационным, а не оптическим контрастам;

- возможностью передачи полученной информации с борта носителя на наземные пункты по радиоканалу на значительные расстояния.

Исходя из особенностей радиолокационной съемки, вытекают возможности практического использования информации в следующих случаях:

- получение изображения поверхности Земли в труднодоступных районах в т.ч. там, где фотосъемка затруднена из-за постоянного облачного покрова.

- оперативное получение в любое время суток и в любых, кроме грозовой облачности, погодных условиях достоверной информации при определении масштабов стихийных бедствий: наводнений, тайфунов, извержения вулканов и др.

- контроль загрязнения морской поверхности при работе бурильных установок (платформ), нефтяных терминалов и других мест возможных выбросов, определение границ загрязнений при авариях танкеров и др.

- оценка состояния ледового покрова и проводка судов в тяжелой ледовой обстановке и др.

Лазерная съемка

Создание лазера положило начало разработки различных лазерных систем дистанционного зондирования, которые получили различные названия. Наиболее широкое применение получило название лидар, который состоит из передатчика и приемника.

Лазерное зондирование относится к активным видам съемок, которое может вестись от ультрафиолетового до ближнего инфракрасного диапазона. Ввиду поглощения атмосферой коротких волн, используемых в лидаре, он эффективно работает только при ясном небе.

Основные области применения лазерной съемки следующие:

- измерение концентрации веществ, содержащихся в атмосфере, связанных с ее загрязнением;

- определение термических, структурных и динамических характеристик атмосферы, океана и подстилающей поверхности;

- обнаружение порогового (критического) содержания различных веществ в атмосфере (углекислого газа, окиси азота и двуокиси серы);

- наблюдение за динамикой шлейфов промышленных выбросов;

- распознавание и выделение в океане зон распространения фитопланктона с целью обнаружения косяков рыб, а так же обнаружение нефтяных пятен.