
- •1) Роль и значение дистанционных методов в географических исследованиях
- •2) Состояние и перспективы развития дистанционных методов
- •3) Вклад белорусских учёных в развитие дистанционных методов.
- •4) Основные этапы развития дистанционных методов
- •5) Летательные аппараты, применяемые для воздушной съемки.
- •6) Космические летательные аппараты и их классификация.
- •7) Классификация искусственных спутников Земли (изс) по назначению
- •8) Пилотируемые орбитальные станции и корабли многоразового использования.
- •9) Классификация Пилотируемых кла.
- •10) Классификация космических летательных аппаратов в зависимости от траектории полета.
- •11) Классификация автоматических кла.
- •12) Виды орбит кла в зависимости от периода обращения вокруг Земли.
- •13) Виды орбит кла в зависимости от угла наклона плоскости орбиты к плоскости экватора.
- •14) Виды орбит кла в зависимости от высоты.
- •15) Влияние орбит кла на масштаб снимков и степень охвата территории съемкой.
- •16) Солнечное излучение и ее отражение объектами земной поверхности.
- •17) Искусственное излучение и собственное излучение Земли.
- •18) Классификация природных объектов в зависимости от отражательной способности.
- •19) Классификация природных объектов в зависимости от отражательной способности.
- •20) Оптимальные сроки дистанционных съемок для изучения луговой растительности.
- •21) Оптимальные сроки аэрокосмической съемки для изучения лесной растительности.
- •22) Оптимальные сроки аэрокосмической съемки для почвенных исследований.
- •23) Электрическая регистрация излучения
- •24) Электромагнитный спектр и его использование при дистанционном зондировании.
- •25) Приемники электромагнитного излучения.
- •26) Фотохимическая регистрация излучения.
- •27) Виды фотограф.Съемки в зависимости от положения оптич.Оси фотоаппарата и степени покрытия съемкой территории.
- •28) Виды аэрофотосъёмки в зависимости от положения оптической оси фотоаппарата.
- •29) Многозональная съемка и ее особенности.
- •30) Сканерная съемка, ее достоинства и недостатки по сравнению с фотографической.
- •31) Фотографическая съемка, ее достоинства и недостатки.
- •32) Виды дистанционных съемок в зависимости от диапазона электромагнитного спектра.
- •33) Радиолокационные снимки, их особенности и основные области применения.
- •34) Активные виды дистанционных съемок и их использование при изучении природных явлений.
- •35) Достоинства и недостатки космических снимков.
- •36) Снимки видимого и ближнего инфракрасного диапазона и их использования в географических исследованиях.
- •37) Характеристика снимков инфракрасного теплового диапазона и их использование.
- •38) Характеристика снимков радиодиапазона и их использование для изучения природных явлений.
- •39) Нефотографические виды дистанционных съёмок и их возможности при изучении природных явлений.
- •40) Стереоскопические свойства снимков и их значение при дешифрировании природных объектов.
- •41) Классификация аэрокосмических снимков по пространственному разрешению.
- •42) Классификация снимков по обзорности и масштабу.
- •43) Изобразительные свойства снимков.
- •44) Информационные свойства снимков.
- •45) Логическая структура дешифрирования снимков.
- •46) Содержание и сущность дешифрирования.
- •47) Особенности дешифрирования лесной растительности по многозональным снимкам.
- •48) Косвенные дешифровочные признаки природных объектов.
- •49) Логическая структура дешифрирования аэрокосмических снимков.
- •50) Дешифрируемость снимков и их количественная оценка.
- •51) Индикационные признаки дешифрирования растительности.
- •52) Основные варианты комбинированного дешифрирования.
- •53) Особенности дешифрирования природных явлений по многозональным снимкам.
- •54) Сравнительная характеристика дешифровочных признаков природных объектов на цветных, спектрозональных и синтезированных снимках.
- •55) Основные этапы полевого метода дешифрирования.
- •56) Способы определения масштаба аэрофотоснимка.
- •57) Определение превышений точек местности по продольным параллаксам.
- •58) Общая схема компьютерной обработки аэрокосмических снимков.
- •59) Виды преобразования аэрокосмического изображения.
- •60) Генерализация аэрокосмического изображения.
- •61) Основные направления использования дистанционных методов в сельском хозяйстве.
- •62) Основные направления использования дистанционных методов для мониторинга окружающей среды.
- •63) Основные направления использования дистанционных методов при изучении неблагоприятных явлений на сельскохозяйственных землях.
- •64) Основные направления использования дистанционных методов при изучении динамики природных явлений.
- •65) Классификация космических снимков по спектральному диапазону съемки и технологии получения изображения.
- •66) Взаимосвязь распределения плотности изображения объектов на аэрокосмических снимках и их спектральной яркостью.
- •67) Спектральная способность различных природных образований и ее количественная характеристика.
- •68) Сравнительная характеристика снимков полученных фотокамерой и оптико-сканирующим устройством.
- •69) Виды материалов аэрокосмической съёмки.
- •70) Виды черно-белых аэрокосмических снимков.
17) Искусственное излучение и собственное излучение Земли.
4.2. Собственное излучение Земли
Все объекты, имеющие температуру выше -273°К излучают электромагнитные волны. Земля в целом, поглощая солнечную энергию, сама является источником радиа-ции. В соответствии с температурой Земли максимум энергии земного излучения при-ходится на инфракрас¬ные лучи с длиной волны около 10 мкм. У аномально нагретых тел максимум излучения смещается на длине волн 5-7 мкм. Земное инфра¬красное излу-чение, простираясь в сторону коротких воли, при длине волны 3-4 мкм имеет интенсив-ность, примерно одинаковую с инфра¬красным солнечным излучением. В сторону длин-ных волн оно распрост¬раняется до метровых радиоволн. Основная энергия уходящего излу¬чения Земли приходится на волны длиной 3-30 мкм.
Для регистрации инфракрасного теплового излучения в настоящее время используются две области спектра: 3-5 мкм и 8-12 мкм. Регистрируемая тепловая энергия излучения, сильно зависящая от температуры (она в соответствии с законом Стефана-Больцмана быстро растет с увеличением температуры), позволяет дистанционно изме-рить температуру объектов. Но даже в случае регистрации не абсолютных температур, а только температурных контрастов, возможно эффективное выделение объектов и ха-рактеристика их свойств по температурным аномалиям. По температурному режиму объекты на земной поверхности можно разделить на объекты с температурой, обуслов-ленной внутренним теплом (вулканы, термальные воды, промышленные объекты и т.д.), и объекты, нагреваемые Солнцем. Максимальные температурные контрасты объектов второй группы наблюдаются около полудня: они меньше вечером и значительно сглаживаются ночью, достигая минимума в предутренние часы. Температуры этих объектов существенно зависит от их отражательной способности, экспозиции и крутиз-ны склонов, силы ветра, а также от их теплофизических характеристик. Например, тем-пература лиственных и хвойных лесов различается на 1-2°С; больные растения имеют более высокую температуру. Очень важно, что объекты имеют закономерный суточный ход температуры. Если глубинные источники вод имеют стабильную температуру в тече¬ние суток, то поверхностные воды ночью теплее, а днем холоднее окружающей суши. Большое влияние на температурные контрасты ока¬зывает увлажненность поверхности в связи с ее охлаждением при испарении. Так в утренние часы на полях хорошо выделяются, по своей температуре холодные увлажненные участки.
Нагретые объекты излучают энергию не только в инфракрасном, но и в радиодиапазоне, хотя радиотепловое излучение по интенсивности значительно уступает инфракрасному. Радиотепловое излучение формируется определённым излучательным слоем, так называемым скин-слоем. Мощность этого слоя тем больше, чем длиннее волна излучения. Основным показателем радиотеплового излучения является радиояр-костная температура Тя, измеряемая в К? - произведение абсолютной температуры Тt и коэффициента излучения ? (закон Релея-Джинса). Тя= ? Тt.
Радиояркостная температура реального объекта равна абсолютной температуре абсолютно черного тела, создающего излучение такой же мощности как и данный объект. Коэффициент излучения, входящий в формулу радиояркостной температуры для абсолютно черного тела равен единице, а для остальных реальных объектов он меньше. Этот коэффициент или, как говорят, степень черноты объекта, значитель¬но варьирует, он зависит от электрических свойств объекта, характера его поверхности, длины волны. Наименьшую радиояркостную температуру имеет вода (~100°К), наибольшую – растительность (~300°К). На радиояркостную температуру водной поверхности оказы¬вает существенное влияние волнение. Волны на водной поверхности увеличивают ее яркостную температуру, так как пористые пенистые гребни имеют более высокий коэффициент излучения, чем вода. Радиояркостная температура льда обычно на несколько десятков градусов выше чем воды. Это объясняется более высоким коэффициентом излучения льда, причем излучательная способность пресноводных льдов выше, чем морских.
Радиационные характеристики почвенного покрова в СВЧ-диапазоне помимо температуры зависят от механического состава, рассеченности поверхности, но наибольшее влияние оказывает влажность почв. Перепад уровней радиоизлучения су-хой почвы и почвы в состоянии полной влагоемкости составляет 50-100°К. Излучение разных длин волн несет информацию о влажности почвы на разных глубинах. По ра-диотепловому излучению удается определить влагосодержание по¬верхностного слоя почвы толщиной 1-2 дм.
Растительный покров обладает наиболее высокими излучателъными свойствами, которые приближаются к свойствам идеального излу¬чателя – абсолютно черного тела. Коэффициент излучения раститель¬ного покрова близок к единице. Его радиояр-костная температура увеличивается пропорционально высоте и густоте растений. Ра-диотепловое излучение почвенно-растителъного покрова различных зон (тайга, тундра, степь, пустыня) заметно различается. Оно имеет выраженный годовой ход с максимумом в летний период.
Опыт показывает, что радиотепловое излучение, регистрируемое в разных зонах, целесообразно использовать для характеристики вполне определенных объектов и явлений. Так, миллиметровые волны наиболее пригодны для изучения атмосферы, сан-тиметровые – льдов, дециметровые – засоленности водоемов и т.д.
4.3. Искусственное излучение
В аэрокосмических методах помимо естественного излучения используется и искусственное. Принципиально для искусственного из¬лучения можно использовать электромагнитные волны всех диапазонов. В настоящее время наибольшее значение имеет использование радиоизлучения СВЧ-диапазона, беспрепятственно достигающе-го земной поверхности независимо от метеорологических условий. Например, при ра-диолокационной съемке снимаемая местность облучается импульсами радиоволн, вы-рабатываемых генератором, установленным на носителе. Отраженные радиоволны, несущие информацию о изучаемых объектах, регистрируются приемником, находящимся на том же носителе. Важнейшими характеристиками отражения радиоволн, так же как и световых являются коэффициент и индикатриса отражения. Коэффициент отражения зависит от таких параметров объекта, как диэлектрическая проницае¬мость и плотность, а индикатриса отражения - от его шероховатости. Отражательная способность объектов в радиодиапазоне изучена зна¬чительно хуже, чем в световом. Но уже сейчас установлено, что интенсивность отраженного радиолуча зависит от влажности почв, минералнзации водоемов, вида сельскохозяйственных культур и т.п.
Интенсивность отражения в радиодиапазоне зависит от направленности зондирующих волн. Если плоскость поляризации параллельна ориентировке линейных элементов местности, то отражение будет интенсивнее, нежели при перпендикулярной поляризации сигнала. Это свойство наиболее ярко проявляется при отражении от взволнованной водной поверхности. Чем больше волнение, тем больше различие в ин-тенсивности отраженных сигналов разной поляризации. Регистрация этих сигналов позволяет более надежно характеризовать объект или явле¬ние.
Весьма ценное свойство радиоизлучения – его проникающая способность. Глубина проникновения увеличивается пропорционально длине волны излучения и зависит от физико-химических свойств по¬верхности, главным образом диэлектрической постоянной. В качестве примера отметим, что короткие радиоволны рассеиваются растительностью, а длинные проникают сквозь нее. Проникновение радиоволн в воду, особенно морскую, значительно слабее, чем в грунт. В пресную воду радиоизлучение проникает лучше. При коротких длинах волн и глинистой влажной почве глубина проникновения составляет миллиметры, при длинных волнах и сухой песчаной почве – десятки метров.
Отражение радиоволн меняется при наличии неоднородностей в строении отражающего слоя, например водоносных слоев, интенсивно отражающих радиоволны, что используется для поиска линз грунтовых вод и для определения глубины их залега-ния. При этом удается достигать глубин в десятки метров, а для сухих верхних грунтов - до сотен метров.